ARPA-E Funding Opportunity Announcements

Collapse Jump to a FOA:
 
FOA Number 
FOA Title 
Announcement Type 
NOI Deadline 
CP Deadline 
FA Deadline 
 
xv
xv
xv
xv
  DE-FOA-0001858 OPEN 2018 Funding Opportunity Announcement (FOA) 2/16/2018 09:30 AM ET 7/2/2018 09:30 AM ET
  DE-FOA-0001952 Support Grants for Participation in ARPA-E Grid Optimization (GO) Competition Challenge 1 Funding Opportunity Announcement (FOA) 9/7/2018 09:30 AM ET
  DE-FOA-0001970 High Intensity Thermal Exchange through Materials, and Manufacturing Processes (HITEMMP) Funding Opportunity Announcement (FOA) 9/12/2018 09:30 AM ET TBD
  DE-FOA-0001972 High Intensity Thermal Exchange through Materials, and Manufacturing Processes (HITEMMP) (SBIR/STTR) Funding Opportunity Announcement (FOA) 9/12/2018 09:30 AM ET TBD
  DE-FOA-0001979 BUILDING RELIABLE ELECTRONICS TO ACHIEVE KILOVOLT EFFECTIVE RATINGS SAFELY (BREAKERS) Funding Opportunity Announcement (FOA) 11/13/2018 09:30 AM ET
  RFI-0000034 Announcement of Teaming Partner List for an upcoming Funding Opportunity Announcement: Enabling a New Generation of High Performance and Durable Heat Exchangers for High Temperature and High Pressure Teaming Partner List

DE-FOA-0001858: OPEN 2018

This FOA marks the fourth OPEN solicitation in the history of ARPA-E. The previous OPEN solicitations were conducted at the inception of the agency in 2009 and again in 2012 and 2015. OPEN 2018 therefore continues the three-year periodic cycle for ARPA-E OPEN solicitations. An OPEN solicitation provides a vitally important mechanism for the support of innovative energy R&D that complements the other primary mechanism, which is through the solicitation of research projects in focused technology programs.

ARPA-E’s focused programs target specific areas of technology that the agency has identified, through extensive interaction with the appropriate external stakeholders, as having significant potential impact on one or more of the Mission Areas described in Section I.A of the FOA. Awards made in response to the solicitation for focused programs support the aggressive technical targets established in that solicitation. Taken in total, ARPA-E’s focused technology programs cover a significant portion of the spectrum of energy technologies and applications.

ARPA-E’s OPEN FOAs ensure that the agency does not miss opportunities to support innovative energy R&D that falls outside of the topics of the focused technology programs or that develop after focused solicitations have closed. OPEN FOAs provide the agency with a remarkable sampling of new and emerging opportunities across the complete spectrum of energy applications and allow the agency to “take the pulse” of the energy R&D community. OPEN FOAs have been and will continue to be the perfect complement to the agency’s focused technology programs – a unique combination of approaches for supporting the most innovative and current energy technology R&D. Indeed, one third of the sixty projects featured in the first two volumes describing ARPA-E impacts stem from OPEN solicitations (https://arpa-e.energy.gov/?q=site-page/arpa-e-impact). Potential applicants to this FOA are strongly encouraged to examine the OPEN projects in these two volumes and all of the projects supported in the previous three OPEN solicitations (https://arpa-e.energy.gov/?q=site-page/open) for examples of the creative and innovative R&D ARPA-E seeks in its OPEN solicitations.

Webinar: In this Webinar, an ARPA-E Program Director provides an overview of OPEN 2018 Full Application Best Practices: Webinar - OPEN 2018 Full Application Best Practices


Documents

  • OPEN 2018 FOA - Full Application_Mod 03 (Last Updated: 5/23/2018 10:06 AM ET)
  • ARPA-E OPEN 2018 Full Application Best Practices (Last Updated: 5/23/2018 10:05 AM ET)

Previous Versions

  • OPEN 2018 FOA - Concept Paper (Last Updated: 12/12/2017 03:33 PM ET)
  • OPEN 2018 FOA - Concept Paper_Mod 01 (Last Updated: 1/19/2018 04:44 PM ET)
  • OPEN 2018 FOA - Concept Paper_Mod 02 (Last Updated: 2/13/2018 04:25 PM ET)

Required Application Documents

Pursuant to the FOA, Applicants are required to submit the "Required Application Documents" with their Application. Incomplete applications will not be reviewed or considered.

View Template Application Documents

Concept Paper

  • OPEN 2018 - Concept Paper Template (Last Updated: 1/19/2018 04:44 PM ET)

Full Application

  • OPEN2018 - Technical Volume Template (Last Updated: 5/23/2018 09:34 AM ET)
  • SF-424 (Last Updated: 5/23/2018 09:34 AM ET)
  • Budget Justification/ SF-424A Workbook (Last Updated: 5/23/2018 09:34 AM ET)
  • Budget Justification/ SF-424A Workbook Guidance (Last Updated: 5/23/2018 09:35 AM ET)
  • Business Assurances & Disclosures Form - Template (Last Updated: 5/23/2018 09:35 AM ET)
  • Business Assurances & Disclosures Form - Sample (Last Updated: 5/23/2018 09:35 AM ET)
  • Summary Slide Template (Last Updated: 5/23/2018 09:35 AM ET)
  • Summary For Public Release Template (Last Updated: 5/23/2018 09:36 AM ET)
  • U.S. Manufacturing Plan Template (Last Updated: 5/23/2018 09:38 AM ET)
  • Replies to Reviewer Comments Template (Last Updated: 5/23/2018 09:37 AM ET)

Contact Information

  • ExchangeHelp@hq.doe.gov 
    Please contact the email address above for questions regarding ARPA-E’s online application portal, ARPA-E eXCHANGE.
  • ARPA-E-CO@hq.doe.gov 
    Please contact the email address above for questions regarding Funding Opportunity Announcements. ARPA-E will post responses on a weekly basis to any questions that are received. ARPA-E may re-phrase questions or consolidate similar questions for administrative purposes.

Submission Deadlines

  • Concept Paper Submission Deadline: 2/16/2018 9:30 AM ET
  • Full Application Submission Deadline: 7/2/2018 9:30 AM ET
  • View Reviewer Comments Period: 8/21/2018 5:00 PM ET – 8/24/2018 5:00 PM ET

DE-FOA-0001952: Support Grants for Participation in ARPA-E Grid Optimization (GO) Competition Challenge 1

The purpose of this FOA is to fund research and development of solution techniques that will be used by awardees to compete in Challenge 1 of the Grid Optimization (GO) Competition. The GO Competition is a series of prize challenges to accelerate the development and comprehensive evaluation of grid software solutions.[1] The first GO Competition, Challenge 1, is an algorithm competition focused on the security-constrained optimal power flow (SCOPF) problem for the electric power sector. Awardees under this FOA will be required to participate in Challenge 1. As described in detail in Appendix A1 to this FOA and on the GO Competition website (https://gocompetition.energy.gov/), Challenge 1 is anticipated to launch in the Fall of 2018. Participation in the GO Competition Challenge 1 will be open to anyone that satisfies the applicable requirements in Rules Document specified on the GO Competition website (https://gocompetition.energy.gov/competition-rules), not just those awarded under ARPA-E DE-FOA-0001952.

The purpose of this FOA is to provide grants: (i) to further incentivize and identify innovative research for solution methods applicable to Challenge 1, and (ii) to enable broader diversity in team domain expertise, i.e., to encourage teams to participate that do not traditionally focus on the particular problems that are targeted but otherwise have innovative approaches for this class of mathematical programs. While Challenge 1 focuses on a power systems problem, the Challenge and this FOA target a much broader audience (e.g., those specialized in operations research, applied mathematics, optimization methods and algorithms, controls etc.).

Existing grid software was designed for a power grid centered on conventional generation and transmission technologies. Recent years have seen major developments in new types of resources including distributed energy resources (DER), intermittent resources (wind and solar), and storage. Such emerging technologies have unique characteristics distinct from conventional resources. Emerging technologies face a prohibitive barrier within large-scale grid operations as the existing software support systems do not acknowledge these unique characteristics with the same level of accuracy and efficiency with which they capture conventional resources. As a consequence, this existing software paradigm does not allow for these assets to be used to their full potential. Furthermore, the ever-increasing emphasis on grid resilience demands innovative management of a more diverse resource portfolio, which existing grid software is not equipped to handle without overly simplifying assumptions. Simply put, in order to improve grid resiliency, the power industry must significantly advance grid software. Innovation is needed regarding the underlying simulation, optimization, and control methods in order to enable increased grid flexibility, reliability, and resilience while also substantially reducing the costs of integrating emerging technologies and resources into the electric power system.

To this end, ARPA-E has set a goal: new modern and innovative grid software to achieve a modern grid. ARPA-E is targeting key areas for innovation in grid software including, but not limited to, optimal utilization of conventional and emerging grid technologies, management of dynamic operations of the grid (including extreme event response and restoration), and management of millions of emerging distributed energy resources.

This broader effort begins with the launch of the Grid Optimization (GO) Competition. If successful, the GO Competition will accelerate the development of transformational and disruptive methods for solving problems related to the electric power grid and to provide a transparent, fair, and comprehensive evaluation of new solution methods. The GO Competition is aimed at overhauling and modernizing grid software and will be structured as multiple challenges, the first of which is expected to begin in the fall of 2018.

Each challenge in the GO Competition will culminate in a Final Event to evaluate the performance, speed, and efficiency of each Entrant’s approach on standardized, realistic datasets in a controlled environment. After each final event, winners will be announced and awards provided. Entrants can enter as “Open Entrants” and can register and submit their programs (i.e., algorithmic approaches) or “Proposal Entrants” who will be provided grants under this FOA to develop their algorithmic approach for submission to Challenge 1. The GO Competition will incentivize entrepreneurial efforts that align with ARPA-E’s mission to innovate in grid software. The algorithms and software solutions submitted to the GO Competition will supplement ARPA-E efforts to break down barriers to empower widespread, fast adoption of emerging grid technologies with the goal of saving billions of dollars in an energy sector with revenues reaching close to $400B per year.[2] In addition to introducing the GO Competition, this FOA provides details for potential Proposal Entrants (also referred to as “awardees” in this FOA) to apply for grants to prepare for and participate in the GO Competition Challenge 1 (see Appendix A1 for more information).


[1] See https://gocompetition.energy.gov/.

[2] Energy Information Administration, “Revenue from Sales of Electricity to Ultimate Customers,” https://www.eia.gov/electricity/annual/html/epa_02_03.html

Documents

  • Support Grants for Participation in ARPA-E GO Competition Challenge 1 FOA Document (Last Updated: 7/24/2018 03:07 PM ET)

Required Application Documents

Pursuant to the FOA, Applicants are required to submit the "Required Application Documents" with their Application. Incomplete applications will not be reviewed or considered.

View Template Application Documents

Full Application

  • GO Competition: Challenge 1 Technical Volume Template (Last Updated: 7/24/2018 10:52 AM ET)
  • SF-424 (Last Updated: 7/24/2018 10:46 AM ET)
  • SF-424A (Last Updated: 7/24/2018 10:46 AM ET)
  • Business Assurances & Disclosures Form - Template (Last Updated: 7/24/2018 10:47 AM ET)
  • Business Assurances & Disclosures Form - Sample (Last Updated: 7/24/2018 02:52 PM ET)

Contact Information

  • ExchangeHelp@hq.doe.gov 
    Please contact the email address above for questions regarding ARPA-E’s online application portal, ARPA-E eXCHANGE.
  • ARPA-E-CO@hq.doe.gov 
    Please contact the email address above for questions regarding Funding Opportunity Announcements. ARPA-E will post responses on a weekly basis to any questions that are received. ARPA-E may re-phrase questions or consolidate similar questions for administrative purposes.

Submission Deadlines

  • Full Application Submission Deadline: 9/7/2018 9:30 AM ET

DE-FOA-0001970: High Intensity Thermal Exchange through Materials, and Manufacturing Processes (HITEMMP)

The HITEMMP (High Intensity Thermal Exchange through Materials, and Manufacturing Processes) program will develop novel approaches and technologies for design topologies, materials, and manufacturing of high temperature, high pressure, and highly compact heat exchangers. These heat exchangers will enable efficient and power dense power generation cycles for applications in transportation, electricity generation, and industrial sectors. If successful, the materials and manufacturing advances from the HITEMMP program may also yield broader benefits in other operating regimes, and in applications beyond heat exchangers and power cycles.

The HITEMMP program targets heat exchangers to operate in environments where temperatures and pressures are simultaneously in excess of 800°C and 80 bar, with operating lifetimes of tens of thousands of hours. These heat exchangers must offer superior thermal performance and low pumping power requirements, and must also be cost competitive and durable (per metrics prescribed in Section I.D of the FOA). These performance goals are beyond the capability of any existing technologies, but ARPA-E believes that recent advances in materials, topological design methodologies, and manufacturing technologies can be leveraged to realize the desired extreme-environment heat exchanger capability. Specific developments include:

  • The identification and development of materials capable of withstanding extreme temperature and pressure conditions while featuring attractive thermo-mechanical and manufacturability properties;
  • Advances in additive and/or subtractive manufacturing techniques to enable the cost-effective realization of small structural feature sizes, smooth surface finishes, and other enabling heat exchanger characteristics; and
  • The refinement and application of advanced design methodologies to leverage new material capabilities while incorporating manufacturing constraints.

ARPA-E has issued this FOA to encourage the formation of multi-disciplinary teams to work to overcome the materials, design, and manufacturing technology barriers that have thus far prevented the realization of catalyzing the development of the desired extreme environment heat exchanger capability. ARPA-E has identified two categories of recuperator-type heat exchangers (> 800°C and > 1100°C, corresponding to metallic and to ceramic/composite materials sets, respectively) as challenge problems.

Each category has performance metrics, as described in Section I.D of this FOA. Applicants are expected to select one of the two categories. In each category, ARPA-E anticipates that teams will initially execute an analytical/computational design effort, will reduce key risks through small-scale heat exchanger module experiments, and will demonstrate a heat exchanger with the desired performance and durability at 50 kW thermal (kWth) scale.

Documents

  • HITEMMP - Concept Paper FOA (Last Updated: 8/9/2018 10:05 AM ET)

Required Application Documents

Pursuant to the FOA, Applicants are required to submit the "Required Application Documents" with their Application. Incomplete applications will not be reviewed or considered.

View Template Application Documents

Concept Paper

  • HITEMMP - Concept Paper Template (Last Updated: 8/9/2018 10:10 AM ET)

Contact Information

  • ExchangeHelp@hq.doe.gov 
    Please contact the email address above for questions regarding ARPA-E’s online application portal, ARPA-E eXCHANGE.
  • ARPA-E-CO@hq.doe.gov 
    Please contact the email address above for questions regarding Funding Opportunity Announcements. ARPA-E will post responses on a weekly basis to any questions that are received. ARPA-E may re-phrase questions or consolidate similar questions for administrative purposes.

Submission Deadlines

  • Concept Paper Submission Deadline: 9/12/2018 9:30 AM ET
  • Full Application Submission Deadline: TBD

DE-FOA-0001972: High Intensity Thermal Exchange through Materials, and Manufacturing Processes (HITEMMP) (SBIR/STTR)

The HITEMMP (High Intensity Thermal Exchange through Materials, and Manufacturing Processes) program will develop novel approaches and technologies for design topologies, materials, and manufacturing of high temperature, high pressure, and highly compact heat exchangers. These heat exchangers will enable efficient and power dense power generation cycles for applications in transportation, electricity generation, and industrial sectors. If successful, the materials and manufacturing advances from the HITEMMP program may also yield broader benefits in other operating regimes, and in applications beyond heat exchangers and power cycles.

The HITEMMP program targets heat exchangers to operate in environments where temperatures and pressures are simultaneously in excess of 800°C and 80 bar, with operating lifetimes of tens of thousands of hours. These heat exchangers must offer superior thermal performance and low pumping power requirements, and must also be cost competitive and durable (per metrics prescribed in Section I.D of the FOA). These performance goals are beyond the capability of any existing technologies, but ARPA-E believes that recent advances in materials, topological design methodologies, and manufacturing technologies can be leveraged to realize the desired extreme-environment heat exchanger capability. Specific developments include:

  • The identification and development of materials capable of withstanding extreme temperature and pressure conditions while featuring attractive thermo-mechanical and manufacturability properties;
  • Advances in additive and/or subtractive manufacturing techniques to enable the cost-effective realization of small structural feature sizes, smooth surface finishes, and other enabling heat exchanger characteristics; and
  • The refinement and application of advanced design methodologies to leverage new material capabilities while incorporating manufacturing constraints.

ARPA-E has issued this FOA to encourage the formation of multi-disciplinary teams to work to overcome the materials, design, and manufacturing technology barriers that have thus far prevented the realization of catalyzing the development of the desired extreme environment heat exchanger capability. ARPA-E has identified two categories of recuperator-type heat exchangers (> 800°C and > 1100°C, corresponding to metallic and to ceramic/composite materials sets, respectively) as challenge problems.

Each category has performance metrics, as described in Section I.D of this FOA. Applicants are expected to select one of the two categories. In each category, ARPA-E anticipates that teams will initially execute an analytical/computational design effort, will reduce key risks through small-scale heat exchanger module experiments, and will demonstrate a heat exchanger with the desired performance and durability at 50 kW thermal (kWth) scale.

Documents

  • HITEMMP SBIR/STTR - Concept Paper FOA (Last Updated: 8/9/2018 10:22 AM ET)

Required Application Documents

Pursuant to the FOA, Applicants are required to submit the "Required Application Documents" with their Application. Incomplete applications will not be reviewed or considered.

View Template Application Documents

Concept Paper

  • HITEMMP SBIR - Concept Paper Template (Last Updated: 8/9/2018 10:22 AM ET)

Contact Information

  • ExchangeHelp@hq.doe.gov 
    Please contact the email address above for questions regarding ARPA-E’s online application portal, ARPA-E eXCHANGE.
  • ARPA-E-CO@hq.doe.gov 
    Please contact the email address above for questions regarding Funding Opportunity Announcements. ARPA-E will post responses on a weekly basis to any questions that are received. ARPA-E may re-phrase questions or consolidate similar questions for administrative purposes.

Submission Deadlines

  • Concept Paper Submission Deadline: 9/12/2018 9:30 AM ET
  • Full Application Submission Deadline: TBD

DE-FOA-0001979: BUILDING RELIABLE ELECTRONICS TO ACHIEVE KILOVOLT EFFECTIVE RATINGS SAFELY (BREAKERS)

Alternating current (AC) electric power has dominated the transmission and distribution system in the U.S for over a century. However, direct current (DC) electric power offers several benefits over AC, reducing system power losses due to improved electrical conductivity utilizing fewer power cables with higher power carrying capacity. In addition, wind and solar PV generators, energy storage, electric transportation, and consumer devices all utilize DC power. Because of this evolving power landscape, estimates show that DC loads currently make up over 50% of total electricity consumption in the United States.

Recent advances in semiconductor-based power electronics (e.g., Wide-bandgap (WBG) semiconductors), Voltage Source Converters (VSCs), DC to DC Converters, and Gas Discharge Tubes, have created an opportunity for greater utilization of DC in distribution and transmission. However, safety and protection mechanisms required to mitigate potentially damaging faults, especially at the medium voltage DC (MVDC) level, represent a significant technology gap. This program seeks to support the advancement of MVDC circuit breaker technologies with a focus on system level integration by overcoming major adoption barriers. Transition from AC to DC will support growth in renewable energy, transportation electrification, and distributed energy resources (DERs) as well as mature industries such as subsea oil and gas exploration.

Documents

  • BREAKERS FOA Document - Modification 02 (Last Updated: 10/11/2018 03:13 PM ET)

Previous Versions

  • BREAKERS FOA Document (Last Updated: 9/11/2018 10:01 AM ET)
  • BREAKERS FOA Document - Modification 01 (Last Updated: 9/26/2018 03:50 PM ET)

Required Application Documents

Pursuant to the FOA, Applicants are required to submit the "Required Application Documents" with their Application. Incomplete applications will not be reviewed or considered.

View Template Application Documents

Full Application

  • BREAKERS - Technical Volume Template (Last Updated: 9/11/2018 10:20 AM ET)
  • SF-424 (Last Updated: 9/11/2018 10:21 AM ET)
  • Budget Justification/ SF-424A Workbook (Last Updated: 9/11/2018 10:23 AM ET)
  • Budget Justification/ SF-424A Workbook Guidance (Last Updated: 9/11/2018 10:24 AM ET)
  • Business Assurances & Disclosures Form - Template (Last Updated: 9/11/2018 10:26 AM ET)
  • Business Assurances & Disclosures Form - Sample (Last Updated: 9/11/2018 10:27 AM ET)
  • Summary Slide Template (Last Updated: 9/11/2018 10:28 AM ET)
  • Summary For Public Release Template (Last Updated: 9/11/2018 10:31 AM ET)
  • Replies to Reviewer Comments Template (Last Updated: 9/11/2018 10:32 AM ET)
  • US Manufacturing Plan Template (Last Updated: 10/12/2018 11:16 AM ET)

Contact Information

  • ExchangeHelp@hq.doe.gov 
    Please contact the email address above for questions regarding ARPA-E’s online application portal, ARPA-E eXCHANGE.
  • ARPA-E-CO@hq.doe.gov 
    Please contact the email address above for questions regarding Funding Opportunity Announcements. ARPA-E will post responses on a weekly basis to any questions that are received. ARPA-E may re-phrase questions or consolidate similar questions for administrative purposes.

Submission Deadlines

  • Full Application Submission Deadline: 11/13/2018 9:30 AM ET
  • View Reviewer Comments Period: 12/14/2018 5:00 PM ET – 12/19/2018 5:00 PM ET

RFI-0000034: Announcement of Teaming Partner List for an upcoming Funding Opportunity Announcement: Enabling a New Generation of High Performance and Durable Heat Exchangers for High Temperature and High Pressure

The Advanced Research Projects Agency – Energy (ARPA–E) intends to issue a new Funding Opportunity Announcement (FOA) for the development of heat exchangers that operate in extreme environments (i.e. temperatures in excess of 800°C and pressures in excess of 100 bar). It is expected that recent advances in topological design methodologies, materials, and manufacturing techniques will enable the realization of an extreme-environment-durable heat exchanger capability that was heretofore unattainable. It is expected that this capability will serve as a critical enabling platform technology for next-generation, high efficiency modular power generation systems in a number of industrial sectors.

The primary focus of the upcoming FOA will be to push the boundaries of design for manufacturability, materials, and manufacturing technologies pertinent to highly effective, low pressure drop, low cost, and durable heat-exchangers. Consequently, given the diverse collection of skill sets that are expected to be required for the successful achievement of the FOA goals, multi-party proposing teams are encouraged.

Challenges on the materials side include use of materials capable of withstanding extreme temperature and pressure conditions while featuring attractive thermo-mechanical and manufacturability properties. On the design side, novel advanced topologies compatible with the selected materials will facilitate enhanced performance and low cost manufacturing. Even more transformative, the performance metrics of this FOA may require new advances in the machine and manufacturing features and process monitoring and control parameters to overcome some of the existing challenges such as the smallest feature size, surface finish quality, and economy-of-scale constraints, among others. Accordingly, ARPA-E anticipates that a dedicated and specifically budgeted portion of the efforts in respective projects be focused on enhancing the capabilities of materials and manufacturing machines and processes to achieve the broader goals of this FOA.

The platform technologies that will be developed in this FOA can lead to substantial technical advancements in fields of significance to U.S. national interests. The push for higher operating temperatures in a typical power generation cycle directly translates to higher energy conversion efficiencies and technology development. While high temperature heat exchangers are key components of most power conversion systems, a few industrial sectors can particularly benefit from such heat exchangers. Examples include conventional and hybrid space and aerospace applications, advanced nuclear and concentrated solar power generation systems, and high efficiency modular thermo-electric power conversion systems.

As described in more detail below, the purpose of this announcement is to facilitate the formation of new project teams to respond to the upcoming FOA. The FOA will provide specific program goals, technical metrics, selection criteria, and other terms and requirements. However, for purposes of the Teaming Partner List, a summary of the currently anticipated scope is provided below.

In order to realize the program goals, ARPA‐E aims to bring together diverse engineering and scientific communities, including researchers in the fields of materials, thermal fluids, thermo-mechanical modeling and design topologies, and advanced manufacturing, to develop enabling materials and manufacturing capabilities to model, design, develop, and demonstrate heat exchanger performance and durability. The FOA will encourage the development of heat exchangers at the demonstration scale of 30 kW with a set of prescribed performance metrics.

As a general matter, ARPA-E strongly encourages outstanding scientists and engineers from different organizations, scientific disciplines, and technology sectors to form project teams. Interdisciplinary and cross-sector collaboration spanning organizational boundaries enables and accelerates the achievement of scientific and technological outcomes that were previously viewed as extremely difficult, if not impossible.

The Teaming Partner List is being compiled to facilitate the formation of new project teams. The Teaming Partner List will be available on ARPA-E eXCHANGE (http://arpa-e-foa.energy.gov), ARPA-E’s online application portal, starting June 06, 2018. The Teaming Partner List will be updated periodically, until the close of the Full Application period, to reflect new Teaming Partners who have provided their information.

Any organization that would like to be included on this list should complete all required fields in the following link: https://arpa-e-foa.energy.gov/Applicantprofile.aspx. Required information includes: Organization Name, Contact Name, Contact Address, Contact Email, Contact Phone, Organization Type, Area of Technical Expertise, and Brief Description of Capabilities.

By submitting a response to this Notice, you consent to the publication of the above-referenced information. By facilitating this Teaming Partner List, ARPA-E does not endorse or otherwise evaluate the qualifications of the entities that self-identify themselves for placement on the Teaming Partner List. ARPA-E will not pay for the provision of any information, nor will it compensate any respondents for the development of such information. Responses submitted to other email addresses or by other means will not be considered.

This Notice does not constitute a FOA. No FOA exists at this time. Applicants must refer to the final FOA, expected to be issued in July 2018, for instructions on submitting an application and for the terms and conditions of funding.

Documents

  • High Temperature High Pressure Heat-Exchangers Teaming Partner Announcement (Last Updated: 6/6/2018 02:06 PM ET)

Contact Information

Teaming Partners

To access the Teaming Partner List for the FOA, click here.