This program seeks to fund the development of transformational electrochemical energy storage technologies that will accelerate widespread electric vehicle adoption by dramatically improving their driving range, cost, and reliability. To achieve this long-term objective, this program aims to maximize specific energy and minimize cost of energy storage systems at the vehicle level. Central to this system-level approach is the use of robust design principles for energy storage systems. Robust design is defined as electrochemical energy storage chemistries and/or architectures (i.e. physical designs) that avoid thermal runaway and are immune to catastrophic failure regardless of manufacturing quality or abuse conditions. In addition, this program seeks multifunctional energy storage designs that use these robust storage systems to simultaneously serve other functions on a vehicle (for example, in the frame, body, and/or crumple zone), thus further reducing an energy storage system’s effective weight when normalized to the entire electric vehicle weight. It is anticipated that the core technologies developed under this program will advance all categories of electrified vehicles (hybrid, plug-in hybrid, extended-range electric, and all-electric vehicles); however, the primary focus of this program is on all-electric vehicles, referred to hereafter as electric vehicles (EVs).