ARPA-E Archived Funding Opportunities

Collapse Jump to a FOA:
 
FOA Number 
FOA Title 
Announcement
Type
 
NOI Deadline 
CP Deadline 
FA Deadline 
 
xv
xv
xv
xv
  DE-FOA-0002533 Request for Information (RFI) DE-FOA-0002533 on Cleaning Up RadioIsotope Enventories (CURIE) Request for Information (RFI) TBD TBD

DE-FOA-0002533: Request for Information (RFI) DE-FOA-0002533 on Cleaning Up RadioIsotope Enventories (CURIE)

The purpose of this RFI is to solicit input for a potential future ARPA-E research program focused on the development of technologies that would enable the effective management of the Nation’s commercial used nuclear fuel (UNF). The goals of this RFI are to (1) solicit information about reactor fuel needs for both the current commercial light-water reactor (LWR) fleet and future advanced reactors, and (2) seek insights into technology gaps and/or cost drivers that may be hindering economical recycling of existing LWR UNF.1 This information is needed to help ARPA-E identify ways in which the Nation’s roughly 86,000 MTU2 inventory of UNF, which has been increasing by approximately 2,000 MTU per year, can best be recycled to support current and advanced reactor fuel needs. Such activities are consistent with ARPA-E’s statutory goals, which include supporting the development of transformative solutions for addressing UNF.3

ARPA-E is interested in information about technologies with the potential to make recycling UNF at least as economical, safe, and secure as the current once-through fuel cycle.4 Such technologies would enable a UNF treatment facility to be economically constructed, managed, and operated; yield an actinide product that is cost-competitive with natural uranium (U) obtained from traditional mining and milling; and generate significantly lower waste volumes than those generated from existing commercial UNF treatment facilities. Implementation of advanced nuclear material accounting technologies and incorporation of a safeguards-by-design philosophy would support this objective by enabling precise, remote, near-real-time monitoring and accounting of special nuclear material5; decreasing hands-on-inspection requirements; and minimizing operational downtime to verify accuracy of material accounting. In aggregate, these innovations could substantially reduce the volume, heat load, and radiotoxicity of high-level waste requiring permanent disposal while providing a valuable and sustainable fuel feedstock for advanced fast reactors and the existing LWR fleet.

The questions in this RFI are intended to allow relevant stakeholders a mechanism to provide input on (i) the nature of a potential UNF recycling facility, (ii) UNF recycling technology gaps, (iii) existing LWR and future advanced reactor feedstock and fuel needs, and (iv) cost drivers for UNF recycling facility capital and management and operations (M&O) costs. Responses to these questions will enable ARPA-E to refine its success metrics for a potential program aimed at supporting the development of economical, safe, secure, and safeguarded recycling technologies. The questions posed in this section are classified into several different groups as appropriate. ARPA-E does not expect any one respondent to answer all, or even many, of these prompts. Simply indicate the group and question number in your response. Appropriate citations are encouraged. Respondents are also welcome to address other relevant avenues/technologies that are not outlined below.

Responses to this RFI should be submitted in PDF format to the email address ARPA-E-RFI @hq.doe.gov by 5:00 PM Eastern time on June 14, 2021.

THIS IS A REQUEST FOR INFORMATION ONLY. THIS NOTICE DOES NOT CONSTITUTE A FUNDING OPPORTUNITY ANNOUNCEMENT (FOA). NO FOA EXISTS AT THIS TIME.

Respondents shall not include any information in the response to this RFI that could be considered proprietary or confidential.



[1] For the purposes of this RFI, recycling of UNF entails (1) fuel treatment to recover valuable actinides (and potentially fission products) from UNF and (2) subsequent reuse of the recovered materials for nuclear and other applications.

[2] MTU=metric tons of uranium. According to the U.S. Energy Information Administration, approximately 79,825 MTU were discharged between 1968 and 2017. Approximately 2,000 MTU UNF are discharged per year, meaning that approximately 86,000 MTU have been discharged as of 2020. https://www.eia.gov/nuclear/spent_fuel/

[3] ARPA-E was chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), as further amended by the Energy Act of 2020 (P.L. 116-260) (codified at 42 U.S.C. § 16538). ARPA-E’s statutory goals are found in 42 U.S.C. § 16538(c). The Energy Act of 2020 amended such goals to include “provid[ing] transformative solutions to improve the management, clean-up, and disposal of radioactive waste and spent nuclear fuel”.

[4] International Atomic Energy Agency (IAEA). 2011. “The nuclear fuel cycle”. https://www.iaea.org/sites/default/files/nfc0811.pdf

[5] U.S. Nuclear Regulatory Commission. “Special nuclear material”. March 09, 2021. https://www.nrc.gov/reading-rm/basic-ref/glossary/special-nuclear-material.html

Documents

  • RFI DE-FOA-0002533_CURIE (Last Updated: 5/11/2021 10:11 AM ET)

Submission Deadlines

  • Concept Paper Submission Deadline: TBD
  • Full Application Submission Deadline: TBD