FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT

ADVANCED RESEARCH PROJECTS AGENCY – ENERGY (ARPA-E) U.S. DEPARTMENT OF ENERGY

SYSTEMS FOR MONITORING AND ANALYTICS FOR RENEWABLE TRANSPORTATION FUELS FROM AGRICULTURAL RESOURCES AND MANAGEMENT (SMARTFARM) SBIR/STTR

Announcement Type: Initial Announcement Funding Opportunity No. DE-FOA-0002251 CFDA Number 81.135

Funding Opportunity Announcement (FOA) Issue Date:	December 18, 2019
First Deadline for Questions to ARPA-E-CO@hq.doe.gov:	5 PM ET, Friday, February 7, 2020
Submission Deadline for Concept Papers:	9:30 AM ET, Wednesday February 19,
	2020
Second Deadline for Questions to ARPA-E-CO@hq.doe.gov:	5 PM ET, TBD
Submission Deadline for Full Applications:	9:30 AM ET, TBD
Submission Deadline for Replies to Reviewer Comments:	5 PM ET, TBD
Expected Date for Selection Notifications:	August 2020
Total Amount to Be Awarded	Approximately \$20 million, subject to
	the availability of appropriated funds to
	be shared between FOAs DE-FOA-
	0002250 and DE-FOA-0002251.
Anticipated Awards	ARPA-E may issue one, multiple, or no
	awards under this FOA. Awards may
	vary between \$252,000 and \$3,613,889.

- For eligibility criteria, see Section III.A III.D of the FOA.
- For cost share requirements under this FOA, see Section III.E of the FOA.
- To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, see Section IV.H.1 of the FOA.

•	Applicants are responsible for meeting each submission deadline. Applicants are strongly
	encouraged to submit their applications at least 48 hours in advance of the submission
	deadline.

	deddine.
•	For detailed guidance on compliance and responsiveness criteria, see Sections III.F.1
	through III.F.4 of the FOA.

TABLE OF CONTENTS

RE	QUI	RED DOCUMENTS CHECKLIST	1 -
I.	F	UNDING OPPORTUNITY DESCRIPTION	2 -
	Α.	AGENCY OVERVIEW	2 -
	В.	SBIR/STTR Program Overview	3 -
	c.	PROGRAM OVERVIEW	4 -
ı	D.	PROGRAM OBJECTIVES	5 -
ı	Ε.	TECHNICAL CATEGORIES OF INTEREST	- 19 -
1	F.	TECHNICAL PERFORMANCE TARGETS	- 19 -
II.	Α	WARD INFORMATION	- 21 -
	Α.	AWARD OVERVIEW	- 21 -
	В.	RENEWAL AWARDS	- 21 -
(c.	ARPA-E FUNDING AGREEMENTS	22 -
	D.	STATEMENT OF SUBSTANTIAL INVOLVEMENT	- 22 -
III.	E	LIGIBILITY INFORMATION	- 23 -
	Α.	ELIGIBLE APPLICANTS	23 -
	1	. SBIR ELIGIBILITY	- 23 -
	2	. STTR ELIGIBILITY	- 24 -
	3	. JOINT SBIR AND STTR ELIGIBILITY	- 24 -
ı	В.	ELIGIBLE SUBRECIPIENTS	- 25 -
	1	. RESEARCH INSTITUTIONS	- 25 -
	2	OTHER PROJECT TEAM MEMBERS	- 25 -
(c.	ELIGIBLE PRINCIPAL INVESTIGATORS	- 26 -
	1	. SBIR	- 26 -
	2	. STTR	- 26 -
١	D.	ELIGIBILITY OF PRIOR SBIR AND STTR AWARDEES: SBA BENCHMARKS ON PROGRESS TOWARDS COMMERCIALIZATION	- 26 -
ı	Ε.	COST SHARING	- 28 -
١	F.	OTHER	- 28 -
	1	. COMPLIANT CRITERIA	- 28 -
	2	. RESPONSIVENESS CRITERIA	- 29 -
	3	SUBMISSIONS SPECIFICALLY NOT OF INTEREST	- 30 -
	4	LIMITATION ON NUMBER OF SUBMISSIONS	- 30 -
IV.		APPLICATION AND SUBMISSION INFORMATION	- 31 -
	۵.	APPLICATION PROCESS OVERVIEW	- 31 -
	1	. REGISTRATION IN SBA COMPANY REGISTRY	- 31 -
	2	. REGISTRATION IN ARPA-E eXCHANGE	- 31 -
	3	. CONCEPT PAPERS	- 31 -
	4	FULL APPLICATIONS	- 32 -
	5	. REPLY TO REVIEWER COMMENTS	- 32 -
	6	. PRE-SELECTION CLARIFICATIONS AND "DOWN-SELECT" PROCESS	- 32 -
	7	SELECTION FOR AWARD NEGOTIATIONS	- 33 -

В.	APPLICATION FORMS	33 -
C.	CONTENT AND FORM OF CONCEPT PAPERS	33 -
1	1. CONCEPT PAPER	34 -
Α	A. CONCEPT SUMMARY	34 -
В	3. INNOVATION AND IMPACT	34 -
C	C. OPERATIONAL PLAN AND SYSTEM COST	35 -
D	D. RISK MATRIX	35 -
E.	PROPOSED WORK	35 -
F.	TEAM ORGANIZATION AND CAPABILITIES	36 -
D.	CONTENT AND FORM OF FULL APPLICATIONS	36 -
E.	CONTENT AND FORM OF REPLIES TO REVIEWER COMMENTS	36 -
F.	INTERGOVERNMENTAL REVIEW	36 -
G.	FUNDING RESTRICTIONS	36 -
Н.	OTHER SUBMISSION REQUIREMENTS	37 -
1	1. USE OF ARPA-E eXCHANGE	37 -
V. A	APPLICATION REVIEW INFORMATION	20
V. A		
A.	CRITERIA	
1	1. CRITERIA FOR CONCEPT PAPERS	
2	2. CRITERIA FOR FULL APPLICATIONS	
3	3. CRITERIA FOR REPLIES TO REVIEWER COMMENTS	39 -
В.	REVIEW AND SELECTION PROCESS	
1	1. PROGRAM POLICY FACTORS	39 -
2	2. ARPA-E REVIEWERS	40 -
3	3. ARPA-E SUPPORT CONTRACTOR	41 -
C.	ANTICIPATED ANNOUNCEMENT AND AWARD DATES	41 -
VI.	AWARD ADMINISTRATION INFORMATION	41 -
Α.	Award Notices	41
	1. REJECTED SUBMISSIONS	
2		
	3. FULL APPLICATION NOTIFICATIONS	
В.	ADMINISTRATIVE AND NATIONAL POLICY REQUIREMENTS	
С.	REPORTING.	
VII.	AGENCY CONTACTS	
Α.	COMMUNICATIONS WITH ARPA-E	- 42 -
В.	DEBRIEFINGS	
VIII.	OTHER INFORMATION	44 -
Α.	TITLE TO SUBJECT INVENTIONS	44 -
В.	GOVERNMENT RIGHTS IN SUBJECT INVENTIONS.	
	1. GOVERNMENT USE LICENSE	
_	2. MARCH-IN RIGHTS	••••••
C.	RIGHTS IN TECHNICAL DATA	
D.	PROTECTED PERSONALLY IDENTIFIABLE INFORMATION	- 46 -

E.	FOAs AND FOA MODIFICATIONS	46 -
F.	OBLIGATION OF PUBLIC FUNDS	46 -
	G. REQUIREMENT FOR FULL AND COMPLETE DISCLOSURE	
	1. RETENTION OF SUBMISSIONS	
ı.	Marking of Confidential Information	47 -
	. Additional Notices	
	COMPLIANCE AUDIT REQUIREMENT	
	GLOSSARY	

REQUIRED DOCUMENTS CHECKLIST

For an overview of the application process, see Section IV.A of the FOA.

For guidance regarding requisite application forms, see Section IV.B of the FOA.

For guidance regarding the content and form of Concept Papers, Full Applications, and Replies to Reviewer Comments, see Sections IV.C, IV.D, and IV.E of the FOA.

SUBMISSION	SION COMPONENTS		FOA SECTION	DEADLINE
Concept Paper	 Each Applicant must submit a Concept Paper in Adobe PDF format by the stated deadline. The Concept Paper must not exceed seven (7) pages in length and must include the following: Concept Summary Innovation and Impact Operational Plan and System Cost (not to exceed 2 pages; 1 for written response and 1 for figures) Risk Matrix Proposed Work Team Organization and Capabilities 	Mandatory	IV.C	9:30 AM ET, Wednesday, February 19, 2020
Full Application	[TO BE INSERTED BY FOA MODIFICATION IN APRIL 2020]	Mandatory	IV.D	9:30 AM ET, TBD
Reply to Reviewer Comments	[TO BE INSERTED BY FOA MODIFICATION IN APRIL 2020]	Optional	IV.E	5 PM ET, TBD

I. FUNDING OPPORTUNITY DESCRIPTION

A. AGENCY OVERVIEW

The Advanced Research Projects Agency – Energy (ARPA-E), an organization within the Department of Energy (DOE), is chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358) to:

- "(A) to enhance the economic and energy security of the United States through the development of energy technologies that result in—
 - (i) reductions of imports of energy from foreign sources;
 - (ii) reductions of energy-related emissions, including greenhouse gases; and
 - (iii) improvement in the energy efficiency of all economic sectors; and
- (B) to ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies."

ARPA-E issues this Funding Opportunity Announcement (FOA) under the programmatic authorizing statute codified at 42 U.S.C. § 16538. The FOA and any awards made under this FOA are subject to 2 C.F.R. Part 200 as amended by 2 C.F.R. Part 910.

ARPA-E funds research on and the development of high-potential, high-impact energy technologies that are too early for private-sector investment. The agency focuses on technologies that can be meaningfully advanced with a modest investment over a defined period of time in order to catalyze the translation from scientific discovery to early-stage technology. For the latest news and information about ARPA-E, its programs and the research projects currently supported, see: http://arpa-e.energy.gov/.

ARPA-E funds transformational research. Existing energy technologies generally progress on established "learning curves" where refinements to a technology and the economies of scale that accrue as manufacturing and distribution to develop drive down the cost/performance metric in a gradual fashion. This continual improvement of a technology is important to its increased commercial deployment and is appropriately the focus of the private sector or the applied technology offices within DOE. By contrast, ARPA-E supports transformative research that has the potential to create fundamentally new learning curves. ARPA-E technology projects typically start with cost/performance estimates well above the level of an incumbent technology. Given the high risk inherent in these projects, many will fail to progress, but some may succeed in generating a new learning curve with a projected cost/performance metric that is significantly lower than that of the incumbent technology.

ARPA-E funds technology with the potential to be disruptive in the marketplace. The mere creation of a new learning curve does not ensure market penetration. Rather, the ultimate value of a technology is determined by the marketplace, and impactful technologies ultimately

become disruptive – that is, they are widely adopted and displace existing technologies from the marketplace or create entirely new markets. ARPA-E understands that definitive proof of market disruption takes time, particularly for energy technologies. Therefore, ARPA-E funds the development of technologies that, if technically successful, have the clear disruptive potential, e.g., by demonstrating capability for manufacturing at competitive cost and deployment at scale.

ARPA-E funds applied research and development. The Office of Management and Budget defines "applied research" as an "original investigation undertaken in order to acquire new knowledge...directed primarily towards a specific practical aim or objective" and defines "experimental development" as "creative and systematic work, drawing on knowledge gained from research and practical experience, which is directed at producing new products or processes or improving existing products or processes."

Applicants interested in receiving financial assistance for basic research should contact the DOE's Office of Science (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy (http://fossil.energy.gov/), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity Delivery and Energy Reliability (http://energy.gov/oe/office-electricity-delivery-andenergy-reliability).

B. SBIR/STTR PROGRAM OVERVIEW

The Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are Government-wide programs authorized under Section 9 of the Small Business Act (15 U.S.C. § 638). The objectives of the SBIR program are to (1) stimulate technological innovation in the private sector, (2) strengthen the role of Small Business Concerns in meeting Federal R&D needs, (3) increase private sector commercialization of innovations derived from Federal R&D activities, (4) foster and encourage participation by socially and economically disadvantaged and women-owned Small Business Concerns, and (5) improve the return on investment from Federally funded research and economic benefits to the Nation. The objective of the STTR program is to stimulate cooperative partnerships of ideas and technologies

¹ OMB Circular A-11 (https://www.whitehouse.gov/wp-content/uploads/2018/06/a11_web_toc.pdf), Section 84, pg. 3.

between Small Business Concerns and partnering Research Institutions through Federally funded R&D activities.²

ARPA-E administers a joint SBIR/STTR program in accordance with the Small Business Act and the SBIR and STTR Policy Directives issued by the U.S. Small Business Administration (SBA).³ ARPA-E provides SBIR/STTR funding in three phases (Phase I, Phase II, and Phase IIS).

C. PROGRAM OVERVIEW

U.S. agriculture has the potential to produce ~5 Quadrillion Btu of energy in the form of biofuels,⁴ and with new innovations throughout the biofuel supply chain, these fuels could become *carbon negative*.⁵ Reaching this potential and achieving greater carbon reductions requires that feedstock producers adopt new technologies and management practices that simultaneously improve yield, drive down production associated emissions, and enhance carbon sequestration in soils. To facilitate the adoption of these new technologies and practices for improved carbon management, feedstock producers need incentives beyond yield. While carbon management incentive structures exist elsewhere in the biofuel supply chain, they do not extend to feedstock production because monitoring and verification of feedstock producers are assumed to produce the same amount of emissions— the national average—despite significant variations in actual emissions when moving to state or regional averages, let alone field-level estimates.⁶

The objective of the Systems for Monitoring and Analytics for Renewable Transportation Fuels from Agricultural Resources and Management (SMARTFARM) program is to bridge the data gap in the biofuel supply chain by funding the development of technologies that can replace national averages and emissions factors for feedstock-related emissions with field-level estimates. The value of such technologies will be evaluated by their ability to **reliably**, accurately (i.e. low uncertainty), and cost-effectively quantify feedstock production lifecycle

² Research Institutions include FFRDCs, nonprofit educational institutions, and other nonprofit research organizations owned and operated exclusively for scientific purposes. Eligible Research Institutions must maintain a place of business in the United States, operate primarily in the United States, or make a significant contribution to the U.S. economy through the payment of taxes or use of American products, materials, or labor.

³ See 77 Fed. Reg. 46806 (Aug. 6, 2012), as amended by 79 Fed. Reg. 1303 (Jan. 8, 2014) 77 Fed. Reg. 46855 (Aug. 6, 2012), as amended by 79 Fed. Reg. 1309 (Jan. 8, 2014).

⁴ Langholtz, M. H., B. J. Stokes, and L. M. Eaton. "2016 Billion-ton report: Advancing domestic resources for a thriving bioeconomy, Volume 1: Economic availability of feedstock." Oak Ridge National Laboratory, Oak Ridge, Tennessee, managed by UT-Battelle, LLC for the US Department of Energy 2016 (2016): 1-411.

⁵ See DE-FOA-0001565: Rhizosphere Observations Optimizing Terrestrial Sequestration (ROOTS); DE-FOA-0001563: Renewable Energy to Fuels through Utilization of Energy-dense Liquids (REFUEL); DE-FOA-0001211: Transportation Energy Resources from Renewable Agriculture (TERRA); DE-FOA-0000470: Plants Engineered To Replace Oil (PETRO)

⁶ Liu, Xinyu, Kwon, Hoyoung, and Wang, Michael. GREET® Analysis for TERRA/ROOTS Success Scenarios. United States: N. p., 2019. Web. doi:10.2172/1546782

emissions (in g CO_2e /acre) at the field level (i.e. scalable to >80 acres). If successful, the technologies funded by this phase of the SMARTFARM program will catalyze new market incentives for efficiency in feedstock production and carbon management, reducing annual U.S. emissions by ~1%,⁷ and with substantially greater potential emissions reductions implications if expanded to other agricultural products beyond biofuels.

The SMARTFARM portfolio is structured in two initial phases: Phase 1 of the program, which is described in Topic H: Establishing validation sites for field-level emissions quantification of agricultural bioenergy feedstock production, of DE-FOA-0001953,⁸ aims to support the establishment of high-resolution datasets that will be available to the public, without restriction, to support testing and validation of emerging monitoring technologies. These Phase 1 production sites will be outfitted with state-of-the-art equipment and monitored on a peracre basis. The low profit margins of feedstock production⁹ and high cost of monitoring technologies make it cost-prohibitive to monitor impacts on a larger scale at such high resolution, which is why this second phase of the portfolio intends to fund technologies capable of delivering the same estimates, at or below specified uncertainty levels, at a cost capable of delivering a positive return on investment when field-level carbon emissions reductions are connected to associated biofuel carbon markets. Under the SMARTFARM portfolio, Phase 2 technologies will be subject to rigorous testing to demonstrate performance in relevant deployment scenarios. Successful projects in this second phase of the portfolio will be encouraged to partner with Phase 1 site managers to deploy and validate their technologies.

D. PROGRAM OBJECTIVES

1. BACKGROUND:

In 2018, over 15 billion gallons of ethanol biofuel and 3.8 billion gallons of biomass-based diesel were generated and used in the transportation sector, amounting to $^{\sim}1\%$ of domestic energy demand. In addition to being a strategic energy asset in the U.S., biofuels provide an economic growth benefit to the nation's farmers and deliver a net reduction in emissions associated with transportation fuels. This reduction is primarily the product of market forces

⁷ Assuming a 30% reduction in nitrogen inputs and nitrous oxide emissions for corn-grain ethanol and ~100 kg/acre/year increase in soil carbon across the projected 5 Quadrillion Btu capacity for terrestrial biofuel feedstocks.

⁸ DE-FOA-0001953: Solicitation on Topics Informing New Program Areas, Topic H: Establishing validation sites for field-level emissions quantification of agricultural bioenergy feedstock production

⁹ USDA Economic Research Service. Corn production costs and returns per planted acre, excluding Government payments. For the base survey of 2016, the U.S. average for net value of production less overhead and operating costs ranged from -\$45 to -\$75 per acre.

¹⁰ Department of Energy, Office of Energy Efficiency & Renewable Energy's Alternative Fuels Data Center.

¹¹ Lewandrowski, Jan, et al. "The greenhouse gas benefits of corn ethanol—assessing recent evidence." Biofuels (2019): 1-15.

implemented through the Low-Carbon Fuel Standard (LCFS) and similar programs, which have driven cuts to biorefinery emissions¹² and incentivized continued evaluation of how to draw down emissions throughout the biofuel supply chain.

Looking forward, analysis suggests that crop-based biofuels have the potential to supply up to ~5% of U.S. energy demand,⁴ and the benefit of this resource to the broader economy and environment could be substantially improved by making the biofuel supply chain carbon negative— i.e. the biofuel lifecycle removes and sequesters more carbon than it emits. While the carbon-negative potential of biofuel production is being investigated and pursued across the supply chain, an effort largely motivated by markets like the LCFS, reaching this potential will require detailed accounting of the inputs (e.g. energy, nutrients, chemicals) and outputs (e.g. energy, co-products, emissions) of the biofuel lifecycle in order to establish a reliable baseline against which to measure progress.

Emissions for the biofuel supply chain are quantified with LifeCycle Analysis (LCA), the tools of which typically model the full bioenergy pathway (Figure 1), including manufacturing of farm inputs, feedstock production and associated land-use change (LUC), biorefinery operations, and combustion, to calculate the amount of greenhouse gas emissions (GHGs) emitted per unit of biofuel produced and consumed (i.e. the carbon intensity or CI, in grams of carbon dioxide equivalent per megajoule, or CO₂e/MJ). In the case of the LCFS, analysis using the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model provides a complete LCA of transportation fuels including gasoline and ethanol derived from multiple different feedstocks.¹³

¹² Between 25% and 40% emissions reduction, based on emissions intensity values for processing in 2009 and 2018 - See California Air and Resources Board's Detailed California-Modified GREET Pathway for Corn Ethanol. (Version 2.0 Released January 20, 2009), and J. Rosenfeld, J. Lewandrowski, T. Hendrickson, K. Jaglo, K. Moffroid, and D. Pape, 2018. A Life-Cycle Analysis of the Greenhouse Gas Emissions from Corn-Based Ethanol. Report prepared by ICF under USDA Contract No. AG-3142-D-17-0161. September 5, 2018.

¹³ See California Air Resources Board LCA Models and Documentation at https://ww3.arb.ca.gov/fuels/lcfs/cagreet/ca-greet.htm

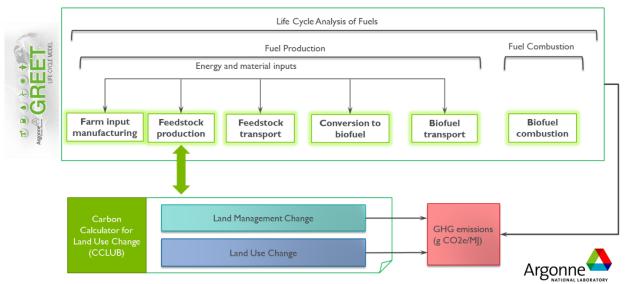


Figure 1 System boundary of biofuel LCA¹⁴

Currently, LCA of ethanol production estimates that ~40% of emissions are contributed by the feedstock production and input manufacturing stages. Variations in environment and management practices produce a broad range of yield outcomes and associated emissions, which get lost in national averages.⁶ As shown in Figure 2, much of the CI of biofuels— in this case, corn-based ethanol— is tied to nitrogen-use efficiency. Nitrogen fertilizer production (i.e. "N Applied" in Figure 2) contributes ~20% of total feedstock emissions, while nitrous oxide (N_2O) emitted over the course of a season contributes ~50%. The remaining emissions associated with feedstock production are the product of energy use (e.g. fuel, ~10%), soil respiration in the form of CO_2 (i.e. soil carbon loss, ~10%), and the production of other chemical inputs (e.g. herbicides and pesticides, ~10%). In the case of soil respiration, the net loss or gain of soil carbon is largely dependent on management practices (e.g. tillage, residues, cover crops) both within and across seasons.

¹⁴ Argonne National Laboratory (2019) "GREET Models." October 4, 2019. https://greet.es.anl.gov/greet.models

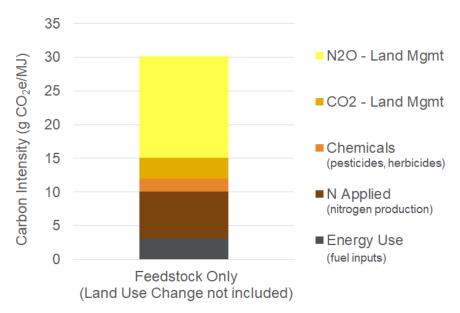


Figure 2 Typical feedstock production emissions breakdown. Emissions values vary by state and region.

Ultimately, positive emissions in the form of nitrogen loss as N₂O, and potentially negative emissions in the form of soil carbon, are the two primary drivers of a feedstock's CI. In most cases, there is significant room for improvement to both, 15,16,17 but current feedstock production practices are only compensated in terms of yield, and low profit margins leave feedstock growers with limited options for improving production efficiency (i.e. yield per unit input), let alone carbon efficiency (i.e. emissions per unit output). Instead, historically-high fertilizer rates that are driven by the primary focus on yield produce unnecessary emissions, impact water quality, and have uncertain returns (e.g. an estimated \$267-702 million of fertilizer value is lost each year¹⁷). While these impacts are understood on a regional or national scale, field-level contributions remain unknown because of the variability mentioned previously, and the data are notoriously difficult to measure, both in terms of instrumentation and operational (e.g. sample collection, preparation and analysis) costs. Therefore, systems for reliably and cost-effectively measuring seasonal N2O emissions and annual soil carbon flux at the field level will be the focus of this phase of the SMARTFARM portfolio. The highly reliable measurements from such instrumentation will provide sufficient confidence to carbon markets, allowing for producers to be properly compensated for the better carbon management practices they implement, instead of the "national average."

¹⁵ Board, Ocean Studies, and National Academies of Sciences, Engineering, and Medicine. *Negative emissions technologies and reliable sequestration: a research agenda*. National Academies Press, 2019, USFRA

¹⁶ U.S. Farmers & Ranchers Alliance. 2019. The Power of Resiliency in Agriculture's Ecosystem Services

¹⁷ Basso, Bruno, et al. "Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest." *Scientific reports* 9.1 (2019): 5774.

1.1 N₂O Emissions Monitoring:

Agricultural soil management (i.e. fertilizer application and other practices to increase nitrogen availability) is the primary contributor of N₂O emissions, which contribute ~4% of U.S. GHG emissions annually. This contribution has a two-fold impact from an energy and emissions perspective: (1) production of synthetic nitrogen via Haber-Bosch is an energy- and emissions-intensive process, and (2) the loss of this nitrogen as N₂O, while estimated to be only 1-2% of nitrogen applied, accounts for ~75% of total annual N₂O emissions in the U.S. Furthermore, N₂O molecules are ~300X more powerful than CO₂ as a GHG, and, unlike CO₂, terrestrial sinks for N₂O do not exist at a significant scale. Despite the significant impact that N₂O emissions have, as well as the impact of their origin (i.e. loss of fertilizer and its embodied energy), there are many technical challenges associated with producing estimates for these emissions at the field level with low uncertainty. These challenges are described in detail in the literature and summarized below.

N₂O emissions are a function of management practices, soil properties, weather patterns, and multiple biological processes. Beyond the spatial variation in nutrient needs due to various biogeochemical properties, studies show year-to-year changes in optimum nitrogen can vary by a factor of two.^{22,23} The high degree of spatial and temporal variation in nitrogen requirements makes it extremely difficult to optimize for nitrogen use efficiency, but there are multiple products at various stages of development that seek to help with nitrogen management in general. If carbon credits were to be paid for field-specific nitrogen management, it would help incentivize practices that reduce emissions associated with nitrogen production by optimizing the total amount of nitrogen applied.

From a carbon intensity perspective, solutions that specifically manage nitrogen losses as N_2O would impart the dual benefit of nitrogen efficiency (i.e. production efficiency) and carbon efficiency. The average loss in the GREET model associated with field-level N_2O is ~15 g CO_2e/MJ . At a carbon price of \$200/metric ton (MT), this loss is associated with a potential payment of ~\$120/acre, 24 which could incentivize significant changes in farm management

¹⁸ 266 million metric tons of CO₂e in the U.S. in 2017. See EPA. 2019. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017 (Chapter 5: Agriculture).

¹⁹ Intergovernmental Panel on Climate Change (IPCC). 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, eds. Agriculture, Forestry and Other Land Use 4: Hayama, Japan: IGES.

²⁰ See Environmental Protection Agency, Understanding Global Warming Potentials at https://www.epa.gov/ghgemissions/understanding-global-warming-potentials

²¹ Paustian, Keith, et al. "Climate-smart soils." Nature 532.7597 (2016): 49-57.

²² Scharf, Peter C., et al. "Field-scale variability in optimal nitrogen fertilizer rate for corn." Agronomy Journal 97.2 (2005): 452-461.

²³ Tremblay, Nicolas, et al. "Corn response to nitrogen is influenced by soil texture and weather." Agronomy Journal 104.6 (2012): 1658-1671.

²⁴ See California Air Resources Board's Data Dashboard for carbon credit prices, currently ~\$200/MT (https://ww3.arb.ca.gov/fuels/lcfs/dashboard/dashboard.htm). Other assumptions include average yield of 178 bushels per acre, 0.35 bushels of corn per gallon ethanol produced, and 80 MJ per gallon of ethanol.

practices. Since only a small portion of applied nitrogen is lost as N₂O, there are many reasons to believe there are opportunities to manage this form of nitrogen loss without reducing yield.

The loss of applied nitrogen in the form of N_2O is often dominated by a limited number of locations within a field and environmental conditions during specific periods of the year. If these 'hot spots' (characterized by topography, soil type, moisture, etc.) and 'hot moments' (characterized by fertilizer application, precipitation, temperature) are not properly monitored, measurements can produce estimates that undercount N_2O emissions by as much as 80%. Current solutions to address the variability of N_2O emissions function on very different spatial and temporal scales and, in most cases, certainty increases as estimates are aggregated to a regional/national and annual level. Monitoring N_2O at different scales comes with trade-offs in terms of cost, complexity, and uncertainty, and the design of statistically valid systems for estimating N_2O losses is likely to require an integrated approach that combines process, field, and regional dynamics.

At the sub-meter scale, static and automatic chambers are the most widely used techniques for quantifying soil N_2O flux in the field. These devices are relatively inexpensive, easy to use, and allow a finer-scale study of different treatments and processes; however, coverage is limited and therefore does not sufficiently address spatial heterogeneity, and installation can introduce disturbances to soil, plants, and field operations. There is also a significant labor constraint, particularly for static chambers, limiting measurement intervals and potentially missing peak emissions periods. The use of automated chambers has addressed the labor constraint to some degree, but comes with additional costs that exacerbate spatial coverage challenges.

At the meter-to-kilometer scale, developments in fast-response Eddy Covariance analyzers for N_2O flux measurements have only recently become available and are still restricted to the research environment as they involve complex and expensive instrumentation, highly technical support staff, and frequent maintenance and calibration. Eddy Covariance relies on near-continuous and highly accurate measurements of gas concentrations and air movements, which can be used to estimate net gas exchange between soils and the atmosphere at the ecosystem level; however, estimation requires substantial and complex computation and still relies on certain assumptions regarding the homogeneity and topography of study plots. 26,27

Modeling approaches offer a supplement to direct N₂O measurements and range in terms of scale and complexity, from emissions-factor approaches (e.g. IPCC) for regional estimates to detailed biogeochemical modeling (e.g. Denitrification-Decomposition (DNDC); daily time-step version of the CENTURY biogeochemical model (DayCENT)) of specific environments. Emissions factors such as those used by the Intergovernmental Panel on Climate Change (IPCC) are

32.4 (2018): 517-549.

²⁵ McGowan, Andrew R., Kraig L. Roozeboom, and Charles W. Rice. "Nitrous oxide emissions from annual and perennial biofuel cropping systems." Agronomy Journal 111.1 (2019): 84-92.

 ²⁶ Butterbach-Bahl, Klaus, et al. "Nitrous oxide emissions from soils: how well do we understand the processes and their controls?." Philosophical Transactions of the Royal Society B: Biological Sciences 368.1621 (2013): 20130122.
 ²⁷ A detailed overview of the state of the art in eddy measurement of N₂O can be found in Nemitz, Eiko, et al.
 "Standardisation of eddy-covariance flux measurements of methane and nitrous oxide." International agrophysics

- 11 -

straightforward to use and work well at the continental and global scales for the purpose of estimating N_2O emissions associated with land management practices, but they are unable to capture the complex exchange at smaller spatial scales. Over the last several years, numerous process-based models have been developed to capture the nitrogen cycle in greater detail; these models vary in terms of data input and model complexity when it comes to the description of nitrogen turnover (e.g. mineralization, nitrification, and denitrification) and N_2O production (Figure 4). Setting aside the exact processes captured by what Butterbach-Bahl et al refers to as the (a) simplified, (b) conceptual, and (C) complex model pathways shown in Figure 3, it is easy to imagine how a model's computational demand and both parametric and structural uncertainty increase with model complexity. Additionally, capturing and incorporating field-specific datasets (e.g. soil pH and moisture field maps at high resolution) to improve modeling at the field level is still difficult to do at scale.

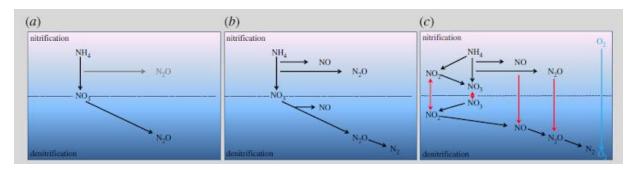


Figure 3 Varying levels of process detail included in (a) simplified, (b) conceptual, and (C) complex models as described by Butterbach-Bahl et al. 26 A more detailed description of the processes captured by these models can be found in the paper and documentation for individual models.

The summary above only scratches the surface of a significant body of work dedicated to monitoring and improving nitrogen use efficiency. The three N_2O quantification approaches outlined— chamber, Eddy Covariance, and modeling techniques—are the most widely used; however, how these techniques are applied, combined, and supplemented, varies widely, as does the success rate. With regard to this Funding Opportunity Announcement, submissions, whether inventing a new sensing modality, utilizing existing sensing modalities in new ways, or utilizing some combination of in-field sensing, remote sensing, and modeling, will all be evaluated in terms of cost, operational complexity and certainty. For example, a combination of soil, input, and yield mapping; imagery from satellites, UAVs, airplanes, etc.; and a select number of "smart" measurements utilizing the revolution in cheap and reliable distributed wireless sensing (e.g. right time and place, in situ/continuous) could produce high-resolution estimates with much lower uncertainty while limiting the cost and physical footprint of monitoring. When considering how to accurately monitor N_2O at a field level, challenges to be addressed include:

²⁸ ARPA-E 2018 Workshop: The Energy-Smart Farm: Distributed Intelligence Networks for Highly Variable and Resource Constrained Crop Production Environments. https://arpa-e.energy.gov/?q=workshop/energy-smart-farm-distributed-intelligence-networks-highly-variable-and-resource

- Determination of which measurements (e.g. N₂O, soil moisture, temperature) are necessary
- When, where, and how the measurements should be taken such that they capture the necessary data without disruption to field operations
- When and how the in-field data will be combined with other data layers and what statistical analyses will be applied
- How uncertainty will be managed and reduced; relatedly, how the system will minimize if not eliminate data gaps during the critical season²⁹
- How all of the above will be made operationally efficient, with positive economics, at scale

As illustrated by the list above, the N₂O monitoring challenge is a complex one— each of the bullets above comes with its own technical challenges, which are compounded by environmental heterogeneity, operational and financial limitations, and assurance of data quality and origin. Successfully addressing these challenges would mean immediate market relevance in clean fuel markets, nitrogen efficiency R&D environments (e.g. nitrogen inhibitor providers, EPA, USDA), and the broader agricultural sector, which contributes ~3% of annual U.S. emissions in the form of N₂O from cropland soils.¹⁸

1.2 Soil Carbon:

In addition to increasing awareness of the role that soils play in critical ecosystem services—e.g. crop production, nutrient cycling, water —the carbon sequestration potential of soils has garnered much attention over the last several years and offers a near-term and potentially low-cost and large-scale carbon drawdown opportunity. Soils constitute the largest terrestrial organic carbon pool, with the equivalent of 3X the amount of CO₂ in the atmosphere stored within the top 2 meters; analysis suggests that up to 60% of U.S. transportation emissions could be sequestered annually.

There are numerous accounts of the environmental and economic benefits of improved soil health, and, conversely, the consequences of depleted soils. ^{15,16,31} The fact that soil carbon optimization strategies, which directly contribute to overall soil health, have not been widely adopted despite these benefits points to a need for economic incentives to offset the potential risks and/or costs associated with carbon optimization. Presently, the only markets for soil carbon are voluntary, and incentives from these markets are an order of magnitude lower than those of regulated markets such as the LCFS, typically <\$20/ metric ton of carbon sequestered. As a result, these voluntary markets must rely on low-resolution and high-uncertainty techniques for quantifying soil carbon or risk declines in participation. Mandating more precise

²⁹ Here, the "critical season" is defined as the period beginning at soil thaw and lasting through the month after the last nitrogen application.

³⁰ DE-FOA-0001565: Rhizosphere Observations Optimizing Terrestrial Sequestration (ROOTS), based on analysis by Paustian, Keith, et al. *Assessment of potential greenhouse gas mitigation from changes to crop root mass and architecture*. Booz Allen Hamiltion Inc., McLean, VA (United States), 2016.

³¹ Doane, M., and M. Doane. "reThink Soil: A Roadmap for US Soil Health." The Nature Conservancy (2016).

measurement of soil carbon introduces a tension between the cost of quantification and the revenue potential, both of which are inversely proportional to uncertainty³² introduced by the high spatial variability of soils and the small changes in carbon relative to the "background" stock.³³

Thus, in contrast to nitrogen-based emissions reductions, which are quantified on a yield or MJ basis and can therefore impart annual payments to growers, soil carbon flux monitoring occurs over longer time scales, typically 5-10 years, in order to detect statistically significant soil carbon stock changes with moderate sampling density. Still, technical challenges related to sampling strategy and measurement technique persist and ultimately limit the market potential for soil carbon storage as uncertainty throttles revenue potential and market participation.³² These challenges are described in detail in the literature and summarized below.

1.2.1 Soil Carbon - Sampling:

The high degree of spatial variation, even in what appear to be "uniform" fields, means that soil carbon content can vary by as much as 5X within the same field; carbon content also changes with depth, with the highest concentrations in the top 20-30 cm of soil. For this reason, appropriate sample number, location, and depth will depend on the management practices and soil type/profile being evaluated, with conventional randomized sampling approaches requiring hundreds of samples in order to obtain an accurate estimation of the "average" soil carbon content of a multi-acre field.^{34,35}

The most widely used soil carbon sampling strategies are design- and model-based, with the randomness of an observation originating from the random selection of sample sites for design-based methods, and from the random term introduced in the model of spatial variation for model-based methods. Deciding which of these approaches to use, and how well they will work, will depend on the purpose; for example, a 2016 evaluation³⁵ of design-based, model-assisted, and model-based sampling and estimation found that, while estimates were similar, model-based estimates had smaller variances than those of design-based methods. While this result represents an advantage of model-based methods in terms of reducing uncertainty, a disadvantage of this approach is that results are not generalizable to other sampling designs. Addressing this disadvantage to achieve a commercially relevant solution risks increasing uncertainty as the model becomes more general, or increasing cost as model calibration requirements mount for site-specific estimates.

³² A more detailed discussion can be found in *Uncertainty Impact on Carbon Credits* below.

³³ Paustian, Keith, et al. "Quantifying carbon for agricultural soil management: from the current status toward a global soil information system." *Carbon Management* 10.6 (2019): 567-587.

³⁴ England, J., and Raphael Viscarra Rossel. "Proximal sensing for soil carbon accounting." Soil 4.2 (2018): 101-122.

³⁵ Rossel, RA Viscarra, et al. "Baseline estimates of soil organic carbon by proximal sensing: Comparing design-based, model-assisted and model-based inference." Geoderma 265 (2016): 152-163.

A more detailed discussion of sampling strategies, associated advantages and disadvantages, and cost/uncertainty trade-offs, can be found in the literature. 33,36,37 Regardless of the sampling strategy, it is important that sampling be sequential in order to enable statistically significant differences to be revealed; however, even with a thoughtful sampling plan, it is not as simple as picking samples from the same area each year and comparing them against each other. When considering market structures and loopholes, annual random sampling provides greater confidence that whole-field management strategies are being applied (vs. carefully tending to certain areas that are known to be measured).

1.2.2 Soil Carbon - Measurement

The optimal sampling strategy will also depend on the method of measurement, with most options falling into one of three categories: conventional (i.e. lab-based) analysis, advanced sensing, and modeling that may or may not use direct measurements as inputs (e.g. remote imagery could be used instead of direct measurements³⁸).

In all cases, effectively accounting for soil carbon stocks (C_s in Equation 1) and changes requires a combination of measurements, with primary inputs being soil carbon concentration (C_m , in %), bulk density (ρ , in g/cm³), gravel content (g, in %), and depth (d, in cm). These measurements produce an estimate of the mass of carbon per unit area, typically in metric tons per hectare or acre, using the following equation:

$$C_s = C_m x \rho x \left(1 - \frac{g}{100}\right) x d$$
 (Equation 1)

Conventional analysis requires that volumetric samples be collected, dried, crushed, and sieved before analysis via automated dry combustion. This is an expensive and laborious process, but it is currently the "gold standard" in soil science research; in non-R&D environments, the cost and labor associated with this form of measurement significantly lowers the number of samples taken, resulting in estimates with high uncertainty. Furthermore, these methods of analysis are destructive in nature, as determining the carbon content as a percent of soil mass requires homogenization, grinding, etc., and bulk density measurement requires known volumes and standard conditions for weighing. Collection, transport, and processing add time and cost to an already burdensome process.

³⁶ Heuvelink, G. B. M., et al. "Towards a sampling design for monitoring global soil organic carbon stocks." Book of Abstracts Wageningen Soil Conference 2017. 2017.

³⁷ Viscarra Rossel, Raphael A., and Dick J. Brus. "The cost-efficiency and reliability of two methods for soil organic C accounting." Land degradation & development 29.3 (2018): 506-520.

³⁸ Angelopoulou, Theodora, et al. "Remote sensing techniques for soil organic carbon estimation: A review." Remote Sensing 11.6 (2019): 676.

³⁹ England, J., and Raphael Viscarra Rossel. "Proximal sensing for soil carbon accounting." Soil 4.2 (2018): 101-122.

Advanced measurement methods such as spectroscopic techniques (e.g. visible-near-infrared and mid-infrared diffuse reflectance spectroscopy) can be used in the lab or the field, and have the potential to deliver rapid, cheap analysis. While these methods have faster throughput when compared to combustion methods, speed comes at the cost of accuracy, and results must be carefully calibrated for different geographic areas and soil types.³⁹ Other methods (e.g. laser-induced breakdown spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, inelastic neutron scattering) have been tested, but none have yet emerged as a viable replacement for conventional analysis methods. Looking forward, a more ambitious goal is to develop "on-the-go" sensors that can be drawn by tractors or dedicated equipment. This approach is still in the early stages and requires calibration and measurement of bulk density.³³

Modeling approaches include empirical and process-based models, both of which are based on data from long-term field experiments. Empirical models are based on statistical relationships and are therefore restricted to inferences based on the observations used to build the model. For example, IPCC GHG inventory guidelines provide an easy method of estimating nationalscale soil carbon stock changes as a function of land use management practices; this method is based on soil sample measurements, although the data do not necessarily cover all soil types, climates, management combinations, etc. Process-based models are based on scientific understanding and tend to aim to achieve more of a general understanding and/or predictive capability based on soil carbon dynamics. Process-based models are more suitable for extrapolation and representation of environments and conditions that are underrepresented in observed data and generally take the form of simulations, most of which were developed for research purposes. There are several process-based models that include soil carbon, and in some cases, both N₂O emissions and soil carbon can be estimated using the same model; DAYCENT, for example, is being used for soil carbon changes and emissions of N₂O and CH₄ in the U.S. GHG inventory and reporting system. Hybrid approaches are also available; for example, COMET-Farm is a web-based full GHG accounting decision support system that employs empirical models for certain GHG sources and process-based models for soil carbon stock changes and N₂O emissions.³³

The content above is only a summary of a significant body of work dedicated to the quantification and monitoring of soil carbon stocks, and in mentioning them, ARPA-E is not intending to endorse any particular method or approach. The three quantification approaches outlined— conventional, advanced, and modeling techniques—are the most widely used; however, how these techniques are applied, combined, and supplemented, varies widely, as does the success rate. Similar to N₂O monitoring approaches, it is likely that some combination of in-field and/or remote sensing and modeling will be required to maintain a balance between cost, complexity and certainty; however, a key difference between the approaches to quantifying these two emissions drivers is the time scale involved. Whereas N₂O estimates require frequent— if not continuous—monitoring, soil carbon measurement need only occur on an annual basis given the small annual changes in soil carbon relative to background stocks. Spatial heterogeneity remains a challenge, however, both in terms of area and depth, which introduces a trade-off of coverage (and therefore uncertainty) and cost. Compounding this challenge is the destructive and invasive nature of current tools (e.g. digging pits, taking soil

cores, and hauling associated equipment in and out of the field), which not only limits the area covered but also the timeframe in which samples can be collected. There is only a short window between harvest and winter weather (e.g. mud and snow, which can make it near impossible to transport the kinds of equipment required to get to desired depths), and much area to cover during that time if carbon measurements were to be captured at scale with high certainty. Tools capable of delivering value in future carbon markets must consider:

- Which measurements (e.g. field-based or remote, lab analysis) are necessary
- Where and how the measurements should be taken such that they capture spatial heterogeneity— both in area and depth—without disruption to field operations
- When and how they will be combined with other data layers, and what statistical analyses will be applied
- How uncertainty will be managed and reduced
- How all of the above will be operationally efficient, with positive economics, at scale

As illustrated by the list above, the soil carbon monitoring challenge is a complex one—each of the bullets above comes with its own technical challenges, which are compounded by environmental variability, operational and financial limitations, and assurance of data quality and origin. Successfully addressing these challenges would mean immediate market relevance in existing carbon markets, R&D environments (e.g. USDA), and the broader agricultural sector.

1.3 Uncertainty Impact on Carbon Credits:

Both agricultural feedstock producers and industrial biofuel refiners are seeking to improve the CI attributes of biofuel feedstocks but are lacking the tools to do so; the discussion above highlights some of the major technology gaps in today's measurement and estimation methods. Meanwhile, market structures aimed at incentivizing carbon efficiency in biofuel markets (e.g. LCFS) and in agriculture more broadly (e.g. USDA Environmental Quality Incentives Program and Conservation Stewardship Program initiatives, and other voluntary markets like the Verified Carbon Standard and American Carbon Registry) are limited to low-resolution and high-uncertainty estimates of feedstock production emissions.

Moving to project-based certification introduces uncertainty in emissions impact due to sampling errors, sensor variation, and model uncertainty. If payments are based on these measured values, they will need to incorporate this uncertainty to ensure that the incentivized impact is not overstated and the effort is not over- or under-compensated. If the error is random, uncertainty decreases with the size of the project, and bundled projects can be used to generate value; however, this is an undesirable state because lowering the resolution of credit values reduces individual incentive and there limits the incentive for individual practice innovation.⁴⁰ In current markets, measurement at individual sites can be discounted in direct

⁴⁰ Applied Geosolutions. DNDC Model Validation and Quantification of Structural Uncertainty to Support Rice Methane Offset Protocols. https://www.c-agg.org/wp-content/uploads/Salas-CSU-C-AGG_mtg_DNDC_rice_uncertainty.pdf

proportion to the uncertainty of the emission measurement (e.g. credits can be valued on the 10^{th} percentile). ⁴¹ The standard deviation of a measurement system can be used to discount the value of credits generated.

Putting this into real numbers (see Figure 4 below) – if a field that reduces emissions from a national average of 30 g CO_2e/MJ to 15 g CO_2e/MJ is measured with three different systems that have a standard deviation (SD) of 1, 3, and 10 g CO_2e/MJ , adjusting the value to the 90^{th} percentile would result in a credit of approximately 16, 20, and 28 g CO_2e/MJ . In this example, three example systems measure an accurate value of 15 g CO_2e/MJ with increasing SD. The project emissions can be credited at the 90^{th} percentile (CI Value + ~1.3SD), meaning there is 90% certainty that local emissions are lower than this value. Because of discounting to improve certainty, the SD determines the economic value of the credits and the worth of a monitoring system.

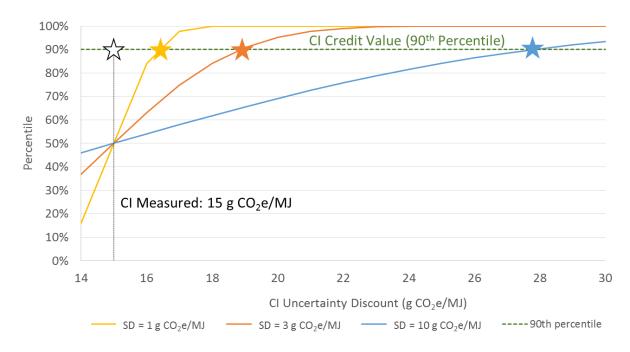


Figure 4 Three example systems measure a CI value of 15 gCO $_2$ e / MJ ("CI Measured" above) with increasing SD. The project emissions can be credited at the 90th percentile ("CI Credit Value" = CI + ~1.3SD), meaning there is 90% certainty that local emissions are lower than this value. In other words, if we assume a baseline of 30 g CO $_2$ e/MJ and a measured CI of 15 g CO $_2$ e/MJ, the credit for the 15 g reduction would be adjusted (i.e. discounted) to a 14, 10, or 2 g CO $_2$ e/MJ based on the SD of 1,3, and 10 g CO $_2$ e/MJ, respectively.

⁴¹ Kim, Man-Keun, and Bruce A. McCarl. "Uncertainty discounting for land-based carbon sequestration." Journal of Agricultural and Applied Economics 41.1 (2009): 1-11.

Table 1 Using the three example systems in Figure 4, the measured CI of 15 g CO $_2$ e/MJ is adjusted upwards based on the degree of uncertainty (i.e. the SD), which thereby reduces the CI reduction that a feedstock producer would be paid for. For the SD = 10 measurement system, the measured CI of 15 g CO $_2$ e/MJ gets adjusted to 28 g CO $_2$ e/MJ, which, for a baseline of 30 g CO $_2$ e/MJ, means the producer would only get paid for a 2 g CO $_2$ e/MJ reduction. The estimates below are for illustrative purposes and assume average per-acre yields of ~180 bushels, or ~41,000 MJ produced per acre.

CI Credit	CI Reduction (90% certainty)	Per-acre Credit (30 g baseline)	Per-acre Payment (\$200/MT carbon)
↑ 15 g	15	615,000	\$123
16 g (SD = 1)	14	574,000	\$112
20 g (SD = 3)	10	410,000	\$83
28 g (SD = 10)	2	82,000	\$16

As shown in Figure 4 and Table 1, reducing the uncertainty of emissions quantification is critical to realizing the revenue potential of carbon management markets. Doing so successfully means that solutions must balance a complex trade-off between the cost and complexity of measurement, the uncertainty associated with the final output (i.e. g CO₂e/MJ), and the revenue potential of obtaining such granular information.

Thus far, economic forces have hindered adoption of advanced technology for commodity production, and high-resolution (i.e. field-level) data is lacking as there is much to be understood about monitoring such varied and complex environments and dynamics. However, the technological revolution and digitization of the U.S. farm is already underway. ARPA-E's TERRA and ROOTS programs have funded dramatic advances in sensing, imaging, robotics, genetics, and computing technologies, and new developments in sensor engineering and identity preservation developed for medical and security purposes are primed for adaption to agricultural production systems to create new monitoring and decision support systems.

Enabling producers to participate in carbon management markets would complement yield-based revenues with economic incentives for input efficiency and restorative practices, while laying the groundwork for other market structures to shift away from national and regional averages toward field-based estimates. While initially applying to existing markets, which could extend to biomass crop feedstocks, these tools could also be applied to production agriculture more broadly to improve its energy balance. The agricultural industry as a whole is a significant contributor of both energy usage and emissions, representing ~2% of U.S. energy use, ⁴² and ~8% of U.S. emissions. ¹⁸

⁴² USDA ERS. Energy Consumption and Production in Agriculture. 2014.

E. TECHNICAL CATEGORIES OF INTEREST

ARPA-E requests submissions for Phase 2 technology solutions capable of producing effective quantification of feedstock-related N₂O emissions (Category 1) or soil carbon storage (Category 2) at the field level. ARPA-E anticipates such quantification will require a "system of systems" to include, but not be limited to, in-field sensors, UAV and satellite imagery, agronomic data, and modeling/simulation tools. Submissions for direct and indirect measurement of the key carbon intensity drivers (i.e. N₂O and soil carbon) are encouraged. Systems must be described in terms of:

- Sensing modality/modalities applied, along with their power source, communication source, any onboard computation hardware, and packaging
- System deployment, calibration, cost, and lifetime
- Communication between modalities (where applicable)
- Data fusion, statistical analysis, models, etc., to be used to produce the key output of either N₂O (g CO₂e/acre) or soil carbon (metric tons of carbon per acre (MT C/acre))
- How uncertainty will be managed and estimated

F. TECHNICAL PERFORMANCE TARGETS

Category 1 - N₂O Emissions Estimation:

Key Output ¹	Total N₂O emissions per season² (in g CO₂e/acre)
System-Level Uncertainty ³ Root Mean Square Error (RMSE) < 200 g N ₂ O/a (= $^{\circ}60 \text{ kg CO}_2/\text{acre}$)	
Spatial Resolution ≤1 acre	
Scale	≥80 acres
Failure Rate	<10% down time during the critical season
Critical Season	Soil thaw through 1 month after the final nitrogen application (exact timing will vary)
System Operation Cost	<\$50 /acre/year at commercial scale – for full system deployment and usage, including installation, calibration, and hardware lifetime

¹ For conversion from N₂O to CO₂, see Environmental Protection Agency, Understanding Global Warming Potentials at https://www.epa.gov/ghgemissions/understanding-global-warming-potentials

 2 Here, season is defined as the period beginning at soil thaw and ending at harvest, with the most critical period for N_2O emissions beginning at soil thaw and lasting through the month after the last application of nitrogen.

³Uncertainty to include uncertainty of collected data (e.g. sensor, imagery, sampling, and any downtime in operation over the course of a season), compounded by any modeling included as part of the system-level (i.e. >80 acre) N₂O emissions quantification. Uncertainty will be determined through technology testing, funded by ARPA-E and conducted at the ground truth field sites funded by ARPA-E under Phase 1 of the SMARTFARM portfolio (see DE-FOA-0001953: Solicitation on Topics Informing New Program Areas, Topic H: Establishing validation sites for field-level emissions quantification of agricultural bioenergy feedstock production).

Category 2 - Soil Carbon Estimation:

Key Output	MT C/acre
Uncertainty ¹	RMSE < 30 kg C per acre (= ~100 kg CO₂e/acre)²
Measurement Depth	≥60 cm
Scale	≥80 acres
System Accessibility ³	>9 months
System Operation Cost	<\$10 /acre/year at commercial scale

¹Uncertainty to include uncertainty of collected data (e.g. sensor, imagery, sampling, and any downtime in operation over the course of a season), compounded by any modeling included as part of the system-level (i.e. >80 acre) soil carbon quantification. Uncertainty will be determined through technology testing, funded by ARPA-E and conducted at the ground truth field sites funded by ARPA-E under Phase 1 of the SMARTFARM portfolio (see DE-FOA-0001953: Solicitation on Topics Informing New Program Areas, Topic H: Establishing validation sites for field-level emissions quantification of agricultural bioenergy feedstock production).

²See EPA Greenhouse Gases Equivalencies Calculator - Calculations and References

³System must be able to access fields for soil measurement at any point within at least 9 months of the year – i.e. capable of overcoming most weather conditions, does not disrupt typical field operations

General Requirements for All Field-Deployed Hardware (e.g. sensors, robots, drones):

Environmental Tolerance	-10 to 110 F, 50 mph wind, dust and rain, 0 to
	100% Relative Humidity

II. AWARD INFORMATION

A. AWARD OVERVIEW

ARPA-E expects to make approximately \$20 million available for new awards, to be shared between FOAs DE-FOA-0002250 and DE-FOA-0002251, subject to the availability of appropriated funds. ARPA-E anticipates making approximately 6-12 awards under FOAs DE-FOA-0002250 and DE-FOA-0002251. ARPA-E may, at its discretion, issue one, multiple, or no awards.

ARPA-E will accept only new applications under this FOA. Applicants may not seek renewal or supplementation of their existing awards through this FOA.

ARPA-E plans to fully fund negotiated budgets at the time of award.

Applicants must apply for a Combined Phase I/II/IIS Award. Combined Phase I/II/IIS Awards are intended to develop transformational technologies with disruptive commercial potential. Such commercial potential may be evidenced by (1) the likelihood of follow-on funding by private or non-SBIR/STTR sources if the project is successful, or (2) the Small Business Concern's record of successfully commercializing technologies developed under prior SBIR/STTR awards. Phase IIS awards are a "sequential" (i.e., additional) Phase II award, intended to allow the continued development of promising energy technologies. Combined Phase I/II/IIS awards may be funded up to \$3,610,000 and may have a period of performance up to 48 months (4 years).

ARPA-E reserves the right to select all or part of a proposed project (i.e. only Phase I, or only Phase I and Phase II). In the event that ARPA-E selects Phase I only or Phase I/II only, then the maximum award amount for a Phase I award is \$252,131 and the maximum amount for a Phase I/II award is \$1, 933,010.

The period of performance for funding agreements may not exceed 48 months. ARPA-E expects the start date for funding agreements to be November 2020, or as negotiated.

B. Renewal Awards

At ARPA-E's sole discretion, awards resulting from this FOA may be renewed by adding one or more budget periods, extending the period of performance of the initial award, or issuing a new award. Renewal funding is contingent on: (1) availability of funds appropriated by Congress for the purpose of this program; (2) substantial progress towards meeting the objectives of the approved application; (3) submittal of required reports; (4) compliance with the terms and conditions of the award; (5) ARPA-E approval of a renewal application; and (6) other factors identified by the Agency at the time it solicits a renewal application.

C. ARPA-E FUNDING AGREEMENTS

Through cooperative agreements, other transactions, and similar agreements, ARPA-E provides financial and other support to projects that have the potential to realize ARPA-E's statutory mission. ARPA-E does not use such agreements to acquire property or services for the direct benefit or use of the U.S. Government.

Congress directed ARPA-E to "establish and monitor project milestones, initiate research projects quickly, and just as quickly terminate or restructure projects if such milestones are not achieved." Accordingly, ARPA-E has substantial involvement in the direction of every Cooperative Agreement, as described in Section II.C below.

Cooperative Agreements involve the provision of financial or other support to accomplish a public purpose of support or stimulation authorized by Federal statute. Under Cooperative Agreements, the Government and Prime Recipients share responsibility for the direction of projects.

Phase I will be made as a fixed-amount award. Phase II and Phase IIS of Combined Phase I/II/IIS awards will be made on a cost-reimbursement basis.

ARPA-E encourages Prime Recipients to review the Model Cooperative Agreement, which is available at https://arpa-e.energy.gov/?q=site-page/funding-agreements.

D. STATEMENT OF SUBSTANTIAL INVOLVEMENT

ARPA-E is substantially involved in the direction of projects from inception to completion. For the purposes of an ARPA-E project, substantial involvement means:

- Project Teams must adhere to ARPA-E's agency-specific and programmatic requirements.
- ARPA-E may intervene at any time in the conduct or performance of work under an award.
- ARPA-E does not limit its involvement to the administrative requirements of an award.
 Instead, ARPA-E has substantial involvement in the direction and redirection of the technical aspects of the project as a whole.
- ARPA-E may, at its sole discretion, modify or terminate projects that fail to achieve predetermined Go/No Go decision points or technical milestones and deliverables.
- During award negotiations, ARPA-E Program Directors and Prime Recipients mutually
 establish an aggressive schedule of quantitative milestones and deliverables that must
 be met every quarter. In addition, ARPA-E will negotiate and establish "Go/No-Go"
 milestones for each project. If the Prime Recipient fails to achieve any of the "Go/No-Go" milestones or technical milestones and deliverables as determined by the ARPA-E

⁴³ U.S. Congress, Conference Report to accompany the 21_{st} Century Competitiveness Act of 2007, H. Rpt. 110-289 at 171-172 (Aug. 1, 2007).

- Contracting Officer, ARPA-E may at its discretion renegotiate the statement of project objectives or schedule of technical milestones and deliverables for the project. In the alternative, ARPA-E may suspend or terminate the award in accordance with 2 C.F.R. §§ 200.338 and 200.339.
- ARPA-E may provide guidance and/or assistance to the Prime Recipient to accelerate
 the commercial deployment of ARPA-E-funded technologies. Guidance and assistance
 provided by ARPA-E may include coordination with other Government agencies and
 nonprofits⁴⁴ to provide mentoring and networking opportunities for Prime Recipients.
 ARPA-E may also organize and sponsor events to educate Prime Recipients about key
 barriers to the deployment of their ARPA-E-funded technologies. In addition, ARPA-E
 may establish collaborations with private and public entities to provide continued
 support for the development and deployment of ARPA-E-funded technologies.

III. ELIGIBILITY INFORMATION

A. **ELIGIBLE APPLICANTS**

1. SBIR ELIGIBILITY

SBA rules and guidelines govern eligibility to apply to this FOA. For information on program eligibility, please refer to SBA's "Guide to SBIR/ STTR Program Eligibility" available at http://sbir.gov/sites/default/files/elig_size_compliance_guide.pdf.

A Small Business Concern⁴⁵ may apply as a Standalone Applicant⁴⁶ or as the lead organization for a Project Team.⁴⁷ If applying as the lead organization, the Small Business Concern must perform at least 66.7% of the work in Phase I and at least 50% of the work in Phase II and Phase IIS, as measured by the Total Project Cost.⁴⁸

 $^{^{\}rm 44}$ The term "nonprofit organization" or "nonprofit" is defined in Section IX.

⁴⁵ A Small Business Concern is a for-profit entity that: (1) maintains a place of business located in the United States; (2) operates primarily within the United States or makes a significant contribution to the United States economy through payment of taxes or use of American products, materials or labor; (3) is an individual proprietorship, partnership, corporation, limited liability company, joint venture, association, trust, or cooperative; and (4) meets the size eligibility requirements set forth in 13 C.F.R. § 121.702. Where the entity is formed as a joint venture, there can be no more than 49% participation by foreign business entities in the joint venture.

⁴⁶ A "Standalone Applicant" is an Applicant that applies for funding on its own, not as part of a Project Team.

⁴⁷ The term "Project Team" is used to mean any entity with multiple players working collaboratively and could encompass anything from an existing organization to an ad hoc teaming arrangement. A Project Team consists of the Prime Recipient, Subrecipients, and others performing any of the research and development work under an ARPA-E funding agreement, whether or not costs of performing the research and development work are being reimbursed under any agreement.

⁴⁸ The Total Project Cost is the sum of the Prime Recipient share and the Federal Government share of total allowable costs. The Federal Government share generally includes costs incurred by GOGOs, FFRDCs, and GOCOs.

For information on eligibility as a Small Business Concern, please refer to SBA's website (https://www.sba.gov/content/am-i-small-business-concern).

2. STTR ELIGIBILITY

SBA rules and guidelines govern eligibility to apply to this FOA. For information on program eligibility, please refer to SBA's "Guide to SBIR/ STTR Program Eligibility" available at http://sbir.gov/sites/default/files/elig_size_compliance_guide.pdf.

Only a Small Business Concern may apply as the lead organization for a Project Team. The Small Business Concern must perform at least 40% of the work in Phase I, Phase II, and/or Phase IIS, as measured by the Total Project Cost. A single Research Institution must perform at least 30% of the work in Phase I, Phase II, and/or Phase IIS, as measured by the Total Project Cost. Please refer to Section III.B.1 of the FOA for guidance on Research Institutions' participation in STTR projects.

For information on eligibility as a Small Business Concern, please refer to SBA's website (https://www.sba.gov/content/am-i-small-business-concern).

3. **JOINT SBIR AND STTR ELIGIBILITY**

An Applicant that meets both the SBIR and STTR eligibility criteria above may request both SBIR and STTR funding if:

- The Small Business Concern is partnered with a Research Institution;
- The Small Business Concern performs at least 66.7% of the work in Phase I and at least 50% of the work in Phase II and/or Phase IIS (as applicable), as measured by the Total Project Cost;
- The partnering Research Institution performs 30-33.3% of the work in Phase I and 30-50% of the work in Phase II and/or Phase IIS (as applicable), as measured by the Total Project Cost; and
- The Principal Investigator (PI) is employed by the Small Business Concern. If the PI is employed by the Research Institution, submissions will be considered only under the STTR program.

B. **ELIGIBLE SUBRECIPIENTS**

1. Research Institutions

A Research Institution⁴⁹ may apply only as a member of a Project Team (i.e., as a Subrecipient to a Small Business Concern). In STTR projects, a single Research Institution must perform at least 30%, but no more than 60%, of the work under the award in Phase I, Phase II, and/or Phase IIS (as applicable), as measured by the Total Project Cost.

2. OTHER PROJECT TEAM MEMBERS

The following entities are eligible to apply for SBIR/STTR funding as a member of a Project Team (i.e., as a Subrecipient to a Small Business Concern):

- For-profit entities, including Small Business Concerns
- Nonprofits other than Research Institutions⁵⁰
- Government-Owned, Government Operated laboratories (GOGOs)
- State, local, and tribal government entities
- Foreign entities⁵¹

In SBIR projects, Project Team members other than the lead organization, including but not limited to Research Institutions, may collectively perform no more than 33.3% of the work under the award in Phase I and no more than 50% of the work under the award in Phase II and/or Phase IIS. This includes efforts performed by Research Institutions.

In STTR projects, Project Team members (other than the lead organization and the partnering Research Institution) may collectively perform no more than 30% of work under the award in Phase I, Phase II, and/or Phase IIS.

All work by foreign entities must be performed by subsidiaries or affiliates incorporated in the United States (see Section IV.G.6 of the FOA). However, the Applicant may request a waiver of this requirement in the Business Assurances & Disclosures Form submitted

C. ELIGIBLE PRINCIPAL INVESTIGATORS

1. SBIR

For the duration of the award, the PI for the proposed project (or, if multiple PIs, at least one PI) must be employed by, and perform more than 50% of his or her work for, the Prime Recipient. The Contracting Officer may waive this requirement or approve the substitution of the PI after consultation with the ARPA-E SBIR/STTR Program Director.

For projects with multiple PIs, at least one PI must meet the primary employment requirement. That PI will serve as the contact PI for the Project Team.

2. STTR

For the duration of the award, the PI for the proposed project (or, if multiple PIs, at least one PI) must be employed by, and perform more than 50% his or her work for, the Prime Recipient or the partnering Research Institution. The Contracting Officer may waive this requirement or approve the substitution of the PI after consultation with the ARPA-E SBIR/STTR Program Director.

For projects with multiple PIs, at least one PI must meet the primary employment requirement. That PI will serve as the contact PI for the Project Team.

D. <u>ELIGIBILITY OF PRIOR SBIR AND STTR AWARDEES: SBA BENCHMARKS ON PROGRESS</u> TOWARDS COMMERCIALIZATION

Applicants awarded multiple prior SBIR or STTR awards must meet DOE's benchmark requirements for progress towards commercialization before ARPA-E may issue a new Phase I award. For purposes of this requirement, Applicants are assessed using their prior Phase I and Phase II SBIR and STTR awards across all SBIR agencies. If an awardee fails to meet either of the benchmarks, that awardee is not eligible for an SBIR or STTR Phase I award and any Phase II award for a period of one year from the time of the determination.

ARPA-E applies two benchmark rates addressing an Applicant's progress towards commercialization: (1) the DOE Phase II Transition Rate Benchmark and (2) the SBA Commercialization Rate Benchmark:

 The DOE Phase II Transition Rate Benchmark sets the minimum required number of Phase II awards the Applicant must have received for a given number of Phase I awards received during the specified period. This Transition Rate Benchmark applies only to Phase I Applicants that have received more than 20 Phase I awards during the last five

(5) year period, excluding the most recently completed fiscal year. DOE's Phase II Transition Rate Benchmark requires that 25% of all Phase I awards received over the past five years transition to Phase II awards.

The SBIR/STTR Phase II transition rates and commercialization rates are calculated using the data in the SBA's TechNet database. For the purpose of these benchmark requirements, awardee firms are assessed once a year, on June 1st, using their prior SBIR and STTR awards across all agencies. SBA makes this tabulation of awardee transition rates and commercialization rates available to all federal agencies. ARPA-E uses this tabulation to determine which companies do not meet the DOE benchmark rates and are, therefore, ineligible to receive new Phase I awards.

• The Commercialization Rate Benchmark sets the minimum Phase III⁵² commercialization results that an Applicant must have achieved from work it performed under prior Phase II awards (i.e. this measures an Applicant's progress from Phase II or Phase IIS to Phase III awards). This benchmark requirement applies only to Applicants that have received more than 15 Phase II awards during the last 10 fiscal years, excluding the two most recently completed fiscal years.

The current Commercialization Benchmark requirement, agreed upon and established by all 11 SBIR agencies, is that the Applicants must have received, to date, an average of at least \$100,000 of sales and/or investments per Phase II award received, <u>or</u> have received a number of patents resulting from the relevant SBIR/STTR work equal to or greater than 15% of the number of Phase II awards received during the period.

• On June 1 of each year, SBIR/STTR awardees registered on SBIR.gov are assessed to determine if they meet the Phase II Transition Rate Benchmark requirement. (At this time, SBA is not identifying companies that fail to meet the Commercialization Rate Benchmark requirement). Companies that fail to meet the Phase II Transition Rate Benchmark as of June 1 of a given year will not be eligible to apply to an SBIR/STTR FOA for the following year. For example, if SBA determined on June 1, 2017 that a small business failed to meet the Phase II Transition Rate Benchmark requirement, that small business would not be eligible to apply to an ARPA-E SBIR/STTR FOA from June 1, 2017 to May 31, 2018.

⁵² Phase III refers to work that derives from, extends or completes an effort made under prior SBIR/STTR funding agreements, but is funded by sources other than the SBIR/STTR Program. Phase III work is typically oriented towards commercialization of SBIR/STTR research or technology. For more information please refer to the Small Business Administration's "Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Program Program Policy Directive" at https://www.sbir.gov/sites/default/files/SBIR-STTR Policy Directive 2019.pdf.

E. Cost Sharing⁵³

Cost sharing is not required for this FOA.

F. OTHER

1. COMPLIANT CRITERIA

Concept Papers are deemed compliant if:

- The Applicant meets the eligibility requirements in Section III.A of the FOA;
- The Concept Paper complies with the content and form requirements in Section IV.C of the FOA; and
- The Applicant entered all required information, successfully uploaded all required documents, and clicked the "Submit" button in ARPA-E eXCHANGE by the deadline stated in the FOA.

Concept Papers found to be noncompliant may not be merit reviewed or considered for award. ARPA-E may not review or consider noncompliant Concept Papers, including Concept Papers submitted through other means, Concept Papers submitted after the applicable deadline, and incomplete Concept Papers. A Concept Paper is incomplete if it does not include required information. ARPA-E will not extend the submission deadline for Applicants that fail to submit required information and documents due to server/connection congestion.

Full Applications are deemed compliant if:

- The Applicant submitted a compliant and responsive Concept Paper;
- The Applicant meets the eligibility requirements in Section III.A of the FOA;
- The Full Application complies with the content and form requirements in Section IV.D of the FOA; and
- The Applicant entered all required information, successfully uploaded all required documents, and clicked the "Submit" button in ARPA-E eXCHANGE by the deadline stated in the FOA.

Full Applications found to be noncompliant may not be merit reviewed or considered for award. ARPA-E may not review or consider noncompliant Full Applications, including Full Applications submitted through other means, Full Applications submitted after the applicable deadline, and incomplete Full Applications. A Full Application is incomplete if it does not include required information and documents, such as Forms SF-424 and SF-424A. ARPA-E will not extend the submission deadline for Applicants that fail to submit required information and documents due to server/connection congestion.

⁵³ Please refer to Section VI.B.3-4 of the FOA for guidance on cost share payments and reporting.

Replies to Reviewer Comments are deemed compliant if:

- The Applicant successfully uploads its response to ARPA-E eXCHANGE by the deadline stated in the FOA; and
- The Replies to Reviewer Comments comply with the content and form requirements of Section IV.E of the FOA.

ARPA-E will not review or consider noncompliant Replies to Reviewer Comments, including Replies submitted through other means and Replies submitted after the applicable deadline. ARPA-E will not extend the submission deadline for Applicants that fail to submit required information due to server/connection congestion. ARPA-E will review and consider each compliant and responsive Full Application, even if no Reply is submitted or if the Reply is found to be noncompliant.

2. RESPONSIVENESS CRITERIA

ARPA-E performs a preliminary technical review of Concept Papers and Full Applications. The following types of submissions may be deemed nonresponsive and may not be reviewed or considered:

- Submissions that fall outside the technical parameters specified in this FOA.
- Submissions that have been submitted in response to currently issued ARPA-E FOAs.
- Submissions that are not scientifically distinct from applications submitted in response to currently issued ARPA-E FOAs.
- Submissions for basic research aimed solely at discovery and/or fundamental knowledge generation.
- Submissions for large-scale demonstration projects of existing technologies.
- Submissions for proposed technologies that represent incremental improvements to existing technologies.
- Submissions for proposed technologies that are not based on sound scientific principles (e.g., violates a law of thermodynamics).
- Submissions for proposed technologies that are not transformational, as described in Section I.A of the FOA.
- Submissions for proposed technologies that do not have the potential to become
 disruptive in nature, as described in Section I.A of the FOA. Technologies must be
 scalable such that they could be disruptive with sufficient technical progress.
- Submissions that are not distinct in scientific approach or objective from activities currently supported by or actively under consideration for funding by any other office within Department of Energy.
- Submissions that are not distinct in scientific approach or objective from activities currently supported by or actively under consideration for funding by other government agencies or the private sector.

 Submissions that do not propose a R&D plan that allows ARPA-E to evaluate the submission under the applicable merit review criteria provided in Section V.A of the FOA.

3. SUBMISSIONS SPECIFICALLY NOT OF INTEREST

Submissions that propose the following will be deemed nonresponsive and will not be merit reviewed or considered:

- Strategies aimed at nitrogen use efficiency or other management tactics to reduce rather than quantify emissions;
- Systems that solely combine commercially available sensor systems / instrumentation
- Submissions for component solutions (e.g. sensors, models) that cannot produce the desired output on their own, and do not integrate into a larger system solution

4. LIMITATION ON NUMBER OF SUBMISSIONS

ARPA-E is not limiting the number of submissions from Applicants. Applicants may submit more than one application to this FOA, provided that each application is scientifically distinct.

However, small businesses that qualify as a "Small Business Concern" may apply to only one of the two ARPA-E SMARTFARM FOAs: ARPA-E FOA DE-FOA-0002251 (SBIR/STTR), Systems for Monitoring and Analytics for Renewable Transportation Fuels from Agricultural Resources and Management (SMARTFARM) (SBIR/STTR), or ARPA-E FOA DE-FOA-0002250, Systems for Monitoring and Analytics for Renewable Transportation Fuels from Agricultural Resources and Management (SMARTFARM). Small businesses that qualify as "Small Business Concerns" are strongly encouraged to apply under the former (SBIR/STTR FOA). To determine eligibility as a "Small Business Concern" under DE-FOA-0002251, please review the eligibility requirements in Sections III.A – III.D above.

IV. APPLICATION AND SUBMISSION INFORMATION

A. <u>Application Process Overview</u>

1. REGISTRATION IN SBA COMPANY REGISTRY

The first step in applying to this FOA is registering in the U.S. Small Business Administration (SBA) Company Registry (http://sbir.gov/registration). Upon completing registration, Applicants will receive a unique small business Control ID and Registration Certificate in Adobe PDF format, which may be used at any participating SBIR and STTR agencies. Applicants that have previously registered in the SBA Company Registry need not register again.

Applicants that are sole proprietors and do not have an Employer Identification Number may use social security numbers for purposes of registering in the SBA Company Registry.

Applicants that do not possess a Dun and Bradstreet Data Universal Numbering System (DUNS) number may also use their social security number in the SBA Company Registry.

Applicants must submit their Registration Certificate in ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov) as part of their Full Application (see Section IV.D.5 of the FOA).

2. REGISTRATION IN ARPA-E eXCHANGE

The first step in applying to this FOA is registration in ARPA-E eXCHANGE, ARPA-E's online application portal. For detailed guidance on using ARPA-E eXCHANGE, please refer to Section IV.H.1 of the FOA and the "ARPA-E eXCHANGE User Guide" (https://arpa-e-foa.energy.gov/Manuals.aspx).

3. CONCEPT PAPERS

Applicants must submit a Concept Paper by the deadline stated in the FOA. Section IV.C of the FOA provides instructions on submitting a Concept Paper.

ARPA-E performs a preliminary review of Concept Papers to determine whether they are compliant and responsive, as described in Section III.F of the FOA. Concept Papers found to be noncompliant or nonresponsive may not be merit reviewed or considered for award. ARPA-E makes an independent assessment of each compliant and responsive Concept Paper based on the criteria and program policy factors in Sections V.A.1 and V.B.1 of the FOA.

ARPA-E will encourage a subset of Applicants to submit Full Applications. Other Applicants will be discouraged from submitting a Full Application in order to save them the time and expense of preparing an application submission that is unlikely to be selected for award negotiations. By discouraging the submission of a Full Application, ARPA-E intends to convey its lack of

programmatic interest in the proposed project. Such assessments do not necessarily reflect judgments on the merits of the proposed project. Unsuccessful Applicants should continue to submit innovative ideas and concepts to future FOAs.

4. FULL APPLICATIONS

Applicants must submit a Full Application by the deadline stated in the FOA. Applicants will have approximately 45 days from receipt of the Encourage/Discourage notification to prepare and submit a Full Application. Section IV.D of the FOA provides instructions on submitting a Full Application.

ARPA-E performs a preliminary review of Full Applications to determine whether they are compliant and responsive, as described in Section III.F of the FOA. Full Applications found to be noncompliant or nonresponsive may not be merit reviewed or considered for award. ARPA-E makes an independent assessment of each compliant and responsive Full Application based on the criteria and program policy factors in Sections V.A and V.B of the FOA.

5. Reply to Reviewer Comments

Once ARPA-E has completed its review of Full Applications, reviewer comments on compliant and responsive Full Applications are made available to Applicants via ARPA-E eXCHANGE. Applicants may submit an optional Reply to Reviewer Comments, which must be submitted by the deadline stated in the FOA. Section IV.E of the FOA provides instructions on submitting a Reply to Reviewer Comments.

ARPA-E performs a preliminary review of Replies to determine whether they are compliant, as described in Section III.F.1 of the FOA. ARPA-E will review and consider compliant Replies only. ARPA-E will review and consider each compliant and responsive Full Application, even if no Reply is submitted or if the Reply is found to be non-compliant.

6. Pre-Selection Clarifications and "Down-Select" Process

Once ARPA-E completes its review of Full Applications and Replies to Reviewer Comments, it may, at the Contracting Officer's discretion, conduct a pre-selection clarification process and/or perform a "down-select" of Full Applications. Through the pre-selection clarification process or down-select process, ARPA-E may obtain additional information from select Applicants through pre-selection meetings, webinars, videoconferences, conference calls, written correspondence, or site visits that can be used to make a final selection determination. ARPA-E will not reimburse Applicants for travel and other expenses relating to pre-selection meetings or site visits, nor will these costs be eligible for reimbursement as pre-award costs.

ARPA-E may select applications for award negotiations and make awards without pre-selection meetings and site visits. Participation in a pre-selection meeting or site visit with ARPA-E does not signify that Applicants have been selected for award negotiations.

7. SELECTION FOR AWARD NEGOTIATIONS

ARPA-E carefully considers all of the information obtained through the application process and makes an independent assessment of each compliant and responsive Full Application based on the criteria and program policy factors in Sections V.A.2 and V.B.1 of the FOA. The Selection Official may select all or part of a Full Application for award negotiations. The Selection Official may also postpone a final selection determination on one or more Full Applications until a later date, subject to availability of funds and other factors. ARPA-E will enter into award negotiations only with selected Applicants.

Applicants are promptly notified of ARPA-E's selection determination. ARPA-E may stagger its selection determinations. As a result, some Applicants may receive their notification letter in advance of other Applicants. Please refer to Section VI.A of the FOA for guidance on award notifications.

B. Application Forms

Required forms for Full Applications are available on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov), including the SF-424 and Budget Justification Workbook/SF-424A. A sample Summary Slide is available on ARPA-E eXCHANGE. Applicants may use the templates available on ARPA-E eXCHANGE, including the template for the Concept Paper, the template for the Technical Volume of the Full Application, the template for the Summary Slide, the template for the Summary for Public Release, the template for the Reply to Reviewer Comments, and the template for the Business Assurances & Disclosures Form. A sample response to the Business Assurances & Disclosures Form is available on ARPA-E eXCHANGE.

C. CONTENT AND FORM OF CONCEPT PAPERS

<u>The Concept Paper is mandatory</u> (i.e. in order to submit a Full Application, a compliant and responsive Concept Paper must have been submitted) and must conform to the following formatting requirements:

- The Concept Paper must not exceed 7 pages in length (inclusive of the Operational Plan and System Cost Section, which is not to exceed two pages) including graphics, figures, and/or tables.
- The Concept Paper must be submitted in Adobe PDF format.
- The Concept Paper must be written in English.
- All pages must be formatted to fit on 8-1/2 by 11 inch paper with margins not less than one inch on every side. Single space all text and use Times New Roman

- typeface, a black font color, and a font size of 12 point or larger (except in figures and tables).
- The ARPA-E assigned Control Number, the Lead Organization Name, and the Principal Investigator's Last Name must be prominently displayed on the upper right corner of the header of every page. Page numbers must be included in the footer of every page.
- The first paragraph must include the Lead Organization's Name and Location, Principal Investigator's Name, Technical Category, Proposed Funding Requested (Federal and Cost Share), and Project Duration.

Concept Papers found to be noncompliant or nonresponsive may not be merit reviewed or considered for award (see Section III.F of the FOA).

Each Concept Paper must be limited to a single concept or technology. Unrelated concepts and technologies must not be consolidated into a single Concept Paper.

A fillable Concept Paper template is available on ARPA-E eXCHANGE at https://arpa-e-foa.energy.gov.

Concept Papers must conform to the content requirements described below. If Applicants exceed the maximum page length indicated above, ARPA-E will review only the authorized number of pages and disregard any additional pages.

1. CONCEPT PAPER

a. **CONCEPT SUMMARY**

• Describe the proposed concept with minimal jargon, and explain how it addresses the Program Objectives of the FOA.

b. INNOVATION AND IMPACT

- Clearly identify the problem to be solved with the proposed technology concept. In this case, the problem to be solved relates to the cost, deployment and scalability challenges described in sections I.D.1.1, I.D.1.2, I.D.1.3, E, and F of the FOA.
- Describe how the proposed effort represents an innovative and potentially transformational solution to the technical challenges posed by the FOA.
- Explain the concept's potential to be disruptive compared to existing or emerging technologies.
- To the extent possible, provide quantitative metrics in a table that compares the proposed technology concept to current and emerging technologies and to the

Technical Performance Targets in Section I.E of the FOA for the appropriate Technology Category in Section I.D of the FOA.

c. OPERATIONAL PLAN AND SYSTEM COST

In no more than 2 pages (1 for written portion, 1 for figures) summarize the anticipated business model, including:

- How the system would be deployed and operated. For in-field devices, how
 deployment, operation and maintenance of field-deployed hardware will not interfere
 with production operations.
- How the design would accommodate deployment/operation with, at most, minor training,
- How much the system is expected to cost at commercial scale on a \$/acre/year basis, broken down by hardware & software components, deployment/labor assumptions, and O&M costs.

d. RISK MATRIX

Identify elements of the solution with the highest anticipated cost and/or uncertainty risks, and the experimental work proposed to reduce those risks.

Cost or uncertainty risk	Novelty of proposed approach	Experimental strategy to reduce cost or uncertainty risk
[Risk #1]		
[Risk #2]		
[Applicants to decide how many risks to include]		

e. Proposed Work

- Describe the final deliverable(s) for the project and the overall technical approach used to achieve project objectives.
- Discuss alternative approaches considered, if any, and why the proposed approach is most appropriate for the project objectives.

- Describe the background, theory, simulation, modeling, experimental data, or other sound engineering and scientific practices or principles that support the proposed approach. Provide specific examples of supporting data and/or appropriate citations to the scientific and technical literature.
- Describe why the proposed effort is a significant technical challenge and the key technical risks to the project. Does the approach require one or more entirely new technical developments to succeed? How will technical risk be mitigated?
- Identify techno-economic challenges to be overcome for the proposed technology to be commercially relevant.
- Estimated federal funds requested; total project cost including cost sharing.

f. TEAM ORGANIZATION AND CAPABILITIES

- Indicate the roles and responsibilities of the organizations and key personnel that comprise the Project Team.
- Provide the name, position, and institution of each key team member and describe in 1-2 sentences the skills and experience that he/she brings to the team.
- Identify key capabilities provided by the organizations comprising the Project Team and how those key capabilities will be used in the proposed effort.
- Identify (if applicable) previous collaborative efforts among team members relevant to the proposed effort.

D. CONTENT AND FORM OF FULL APPLICATIONS

[TO BE INSERTED BY FOA MODIFICATION IN APRIL 2020]

E. CONTENT AND FORM OF REPLIES TO REVIEWER COMMENTS

[TO BE INSERTED BY FOA MODIFICATION IN APRIL 2020]

F. INTERGOVERNMENTAL REVIEW

This program is not subject to Executive Order 12372 (Intergovernmental Review of Federal Programs).

G. Funding Restrictions

[TO BE INSERTED BY FOA MODIFICATION IN APRIL 2020]

H. OTHER SUBMISSION REQUIREMENTS

Use of ARPA-E eXCHANGE

To apply to this FOA, Applicants must register with ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). Concept Papers, Full Applications, and Replies to Reviewer Comments must be submitted through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/login.aspx). ARPA-E will not review or consider applications submitted through other means (e.g., fax, hand delivery, email, postal mail). For detailed guidance on using ARPA-E eXCHANGE, please refer to the "ARPA-E eXCHANGE Applicant Guide" (https://arpa-e-foa.energy.gov/Manuals.aspx).

Upon creating an application submission in ARPA-E eXCHANGE, Applicants will be assigned a Control Number. If the Applicant creates more than one application submission, a different Control Number will be assigned for each application.

Once logged in to ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/login.aspx), Applicants may access their submissions by clicking the "My Submissions" link in the navigation on the left side of the page. Every application that the Applicant has submitted to ARPA-E and the corresponding Control Number is displayed on that page. If the Applicant submits more than one application to a particular FOA, a different Control Number is shown for each application.

Applicants are responsible for meeting each submission deadline in ARPA-E eXCHANGE.

Applicants are strongly encouraged to submit their applications at least 48 hours in advance of the submission deadline. Under normal conditions (i.e., at least 48 hours in advance of the submission deadline), Applicants should allow at least 1 hour to submit a Concept Paper, or Full Application. In addition, Applicants should allow at least 15 minutes to submit a Reply to Reviewer Comments. Once the application is submitted in ARPA-E eXCHANGE, Applicants may revise or update their application until the expiration of the applicable deadline.

Applicants should not wait until the last minute to begin the submission process. During the final hours before the submission deadline, Applicants may experience server/connection congestion that prevents them from completing the necessary steps in ARPA-E eXCHANGE to submit their applications. ARPA-E will not extend the submission deadline for Applicants that fail to submit required information and documents due to server/connection congestion.

ARPA-E may not review or consider incomplete applications and applications received after the deadline stated in the FOA. Such applications may be deemed noncompliant (see Section III.F.1 of the FOA). The following errors could cause an application to be deemed "incomplete" and thus noncompliant:

- Failing to comply with the form and content requirements in Section IV of the FOA;
- Failing to enter required information in ARPA-E eXCHANGE;

- Failing to upload required document(s) to ARPA-E eXCHANGE;
- Failing to click the "Submit" button in ARPA-E eXCHANGE by the deadline stated in the FOA;
- Uploading the wrong document(s) or application(s) to ARPA-E eXCHANGE; and
- Uploading the same document twice, but labeling it as different documents. (In the latter scenario, the Applicant failed to submit a required document.)

ARPA-E urges Applicants to carefully review their applications and to allow sufficient time for the submission of required information and documents.

V. APPLICATION REVIEW INFORMATION

A. CRITERIA

ARPA-E performs a preliminary review of Concept Papers and Full Applications to determine whether they are compliant and responsive (see Section III.F of the FOA). ARPA-E also performs a preliminary review of Replies to Reviewer Comments to determine whether they are compliant.

ARPA-E considers a mix of quantitative and qualitative criteria in determining whether to encourage the submission of a Full Application and whether to select a Full Application for award negotiations.

1. CRITERIA FOR CONCEPT PAPERS

- (1) Impact of the Proposed Technology Relative to FOA Targets (50%) This criterion involves consideration of the following:
 - The potential for a transformational and disruptive (not incremental) advancement compared to existing or emerging technologies;
 - Achievement of the technical performance targets defined in Section I.F of the FOA for the appropriate technology Category in Section I.E of the FOA;
 - Identification of techno-economic challenges that must be overcome for the proposed technology to be commercially relevant; and
 - Demonstration of awareness of competing commercial and emerging technologies and identifies how the proposed concept/technology provides significant improvement over existing solutions.
- (2) Overall Scientific and Technical Merit (50%) This criterion involves consideration of the following:
 - The feasibility of the proposed work, as justified by appropriate background, theory,

- simulation, modeling, experimental data, or other sound scientific and engineering practices;
- Sufficiency of technical approach to accomplish the proposed R&D objectives, including why the proposed concept is more appropriate than alternative approaches and how technical risk will be mitigated;
- Clearly defined project outcomes and final deliverables; and
- The demonstrated capabilities of the individuals performing the project, the key capabilities of the organizations comprising the Project Team, the roles and responsibilities of each organization and (if applicable) previous collaborations among team members supporting the proposed project.

Submissions will not be evaluated against each other since they are not submitted in accordance with a common work statement. The above criteria will be weighted as follows:

Impact of the Proposed Technology Relative to FOA Targets	50%
Overall Scientific and Technical Merit	50%

2. CRITERIA FOR FULL APPLICATIONS

[TO BE INSERTED BY FOA MODIFICATION IN APRIL 2020]

3. Criteria for Replies to Reviewer Comments

[TO BE INSERTED BY FOA MODIFICATION IN APRIL 2020]

B. REVIEW AND SELECTION PROCESS

1. Program Policy Factors

In addition to the above criteria, ARPA-E may consider the following program policy factors in determining which Concept Papers to encourage to submit a Full Application and which Full Applications to select for award negotiations:

- I. **ARPA-E Portfolio Balance**. Project balances ARPA-E portfolio in one or more of the following areas:
 - a. Diversity of technical personnel in the proposed Project Team;
 - b. Technological diversity;
 - c. Organizational diversity;
 - d. Geographic diversity;
 - e. Technical or commercialization risk; or
 - f. Stage of technology development.

- II. **Relevance to ARPA-E Mission Advancement.** Project contributes to one or more of ARPA-E's key statutory goals:
 - a. Reduction of U.S. dependence on foreign energy sources;
 - b. Stimulation of domestic manufacturing/U.S. Manufacturing Plan;
 - c. Reduction of energy-related emissions;
 - d. Increase in U.S. energy efficiency;
 - e. Enhancement of U.S. economic and energy security; or
 - f. Promotion of U.S. advanced energy technologies competitiveness.

III. Synergy of Public and Private Efforts.

- a. Avoids duplication and overlap with other publicly or privately funded projects;
- Promotes increased coordination with nongovernmental entities for demonstration of technologies and research applications to facilitate technology transfer; or
- c. Increases unique research collaborations.
- IV. **Low likelihood of other sources of funding.** High technical and/or financial uncertainty that results in the non-availability of other public, private or internal funding or resources to support the project.
- V. High Project Impact Relative to Project Cost.

2. ARPA-E REVIEWERS

By submitting an application to ARPA-E, Applicants consent to ARPA-E's use of Federal employees, contractors, and experts from educational institutions, nonprofits, industry, and governmental and intergovernmental entities as reviewers. ARPA-E selects reviewers based on their knowledge and understanding of the relevant field and application, their experience and skills, and their ability to provide constructive feedback on applications.

ARPA-E requires all reviewers to complete a Conflict-of-Interest Certification and Nondisclosure Agreement through which they disclose their knowledge of any actual or apparent conflicts and agree to safeguard confidential information contained in Concept Papers, Full Applications, and Replies to Reviewer Comments. In addition, ARPA-E trains its reviewers in proper evaluation techniques and procedures.

Applicants are not permitted to nominate reviewers for their applications. Applicants may contact the Contracting Officer by email (<u>ARPA-E-CO@hq.doe.gov</u>) if they have knowledge of a potential conflict of interest or a reasonable belief that a potential conflict exists.

3. ARPA-E SUPPORT CONTRACTOR

ARPA-E utilizes contractors to assist with the evaluation of applications and project management. To avoid actual and apparent conflicts of interest, ARPA-E prohibits its support contractors from submitting or participating in the preparation of applications to ARPA-E.

By submitting an application to ARPA-E, Applicants represent that they are not performing support contractor services for ARPA-E in any capacity and did not obtain the assistance of ARPA-E's support contractor to prepare the application. ARPA-E will not consider any applications that are submitted by or prepared with the assistance of its support contractors.

C. ANTICIPATED ANNOUNCEMENT AND AWARD DATES

[TO BE INSERTED BY FOA MODIFICATION IN APRIL 2020]

VI. AWARD ADMINISTRATION INFORMATION

A. AWARD NOTICES

1. REJECTED SUBMISSIONS

Noncompliant and nonresponsive Concept Papers and Full Applications are rejected by the Contracting Officer and are not merit reviewed or considered for award. The Contracting Officer sends a notification letter by email to the technical and administrative points of contact designated by the Applicant in ARPA-E eXCHANGE. The notification letter states the basis upon which the Concept Paper or Full Application was rejected.

2. CONCEPT PAPER NOTIFICATIONS

ARPA-E promptly notifies Applicants of its determination to encourage or discourage the submission of a Full Application. ARPA-E sends a notification letter by email to the technical and administrative points of contact designated by the Applicant in ARPA-E eXCHANGE. ARPA-E provides feedback in the notification letter in order to guide further development of the proposed technology.

Applicants may submit a Full Application even if they receive a notification discouraging them from doing so. By discouraging the submission of a Full Application, ARPA-E intends to convey its lack of programmatic interest in the proposed project. Such assessments do not necessarily reflect judgments on the merits of the proposed project. The purpose of the Concept Paper phase is to save Applicants the considerable time and expense of preparing a Full Application that is unlikely to be selected for award negotiations.

A notification letter encouraging the submission of a Full Application does <u>not</u> authorize the Applicant to commence performance of the project. Please refer to Section IV.G of the FOA for guidance on pre-award costs.

3. Full Application Notifications

[TO BE INSERTED BY FOA MODIFICATION IN APRIL 2020]

B. Administrative and National Policy Requirements

[TO BE INSERTED BY FOA MODIFICATION IN APRIL 2020]

C. REPORTING

[TO BE INSERTED BY FOA MODIFICATION IN APRIL 2020]

VII. AGENCY CONTACTS

A. COMMUNICATIONS WITH ARPA-E

Upon the issuance of a FOA, only the Contracting Officer may communicate with Applicants. ARPA-E personnel and our support contractors are prohibited from communicating (in writing or otherwise) with Applicants regarding the FOA. This "quiet period" remains in effect until ARPA-E's public announcement of its project selections.

During the "quiet period," Applicants are required to submit all questions regarding this FOA to <u>ARPA-E-CO@hq.doe.gov</u>. Questions and Answers (Q&As) about ARPA-E and the FOA are available at http://arpa-e.energy.gov/faq. For questions that have not already been answered, please send an email with the FOA name and number in the subject line to ARPA-E-CO@hq.doe.gov. Due to the volume of questions received, ARPA-E will only answer pertinent questions that have not yet been answered and posted at the above link.

- ARPA-E will post responses on a weekly basis to any questions that are received that have not already been addressed at the link above. ARPA-E may re-phrase questions or consolidate similar questions for administrative purposes.
- ARPA-E will cease to accept questions approximately 10 business days in advance of each submission deadline. Responses to questions received before the cutoff will be posted approximately one business day in advance of the submission deadline.
 ARPA-E may re-phrase questions or consolidate similar questions for administrative purposes.

 Responses are published in a document specific to this FOA under "CURRENT FUNDING OPPORTUNITIES – FAQS" on ARPA-E's website (http://arpa-e.energy.gov/faq).

Applicants may submit questions regarding ARPA-E eXCHANGE, ARPA-E's online application portal, to ExchangeHelp@hq.doe.gov. ARPA-E will promptly respond to emails that raise legitimate, technical issues with ARPA-E eXCHANGE. ARPA-E will refer any questions regarding the FOA to ARPA-E-CO@hq.doe.gov.

ARPA-E will not accept or respond to communications received by other means (e.g., fax, telephone, mail, hand delivery). Emails sent to other email addresses will be disregarded.

During the "quiet period," only the Contracting Officer may authorize communications between ARPA-E personnel and Applicants. The Contracting Officer may communicate with Applicants as necessary and appropriate. As described in Section IV.A of the FOA, the Contracting Officer may arrange pre-selection meetings and/or site visits during the "quiet period."

B. Debriefings

ARPA-E does not offer or provide debriefings. ARPA-E provides Applicants with a notification encouraging or discouraging the submission of a Full Application based on ARPA-E's assessment of the Concept Paper. In addition, ARPA-E provides Applicants with reviewer comments on Full Applications before the submission deadline for Replies to Reviewer Comments.

VIII. OTHER INFORMATION

A. <u>TITLE TO SUBJECT INVENTIONS</u>

Ownership of subject inventions is governed pursuant to the authorities listed below. Typically, either by operation of law or under the authority of a patent waiver, Prime Recipients and Subrecipients may elect to retain title to their subject inventions under ARPA-E funding agreements.

- Domestic Small Businesses, Educational Institutions, and Nonprofits: Under the Bayh-Dole Act (35 U.S.C. § 200 et seq.), domestic small businesses, educational institutions, and nonprofits may elect to retain title to their subject inventions. If Prime Recipients/Subrecipients elect to retain title, they must file a patent application in a timely fashion, generally one year from election of title, though: a) extensions can be granted, and b) earlier filing is required for certain situations ("statutory bars," governed by 35 U.S.C. § 102) involving publication, sale, or public use of the subject invention.
- All other parties: The Federal Non-Nuclear Energy Research and Development Act of 1974, 42. U.S.C. 5908, provides that the Government obtains title to new inventions unless a waiver is granted (see below).
- Class Waiver: Under 42 U.S.C. § 5908, title to subject inventions vests in the U.S. Government and large businesses and foreign entities do not have the automatic right to elect to retain title to subject inventions. However, ARPA-E typically issues "class patent waivers" under which large businesses and foreign entities that meet certain stated requirements, such as cost sharing of at least 20%, may elect to retain title to their subject inventions. If a large business or foreign entity elects to retain title to its subject invention, it must file a patent application in a timely fashion. If the class waiver does not apply, a party may request a waiver in accordance with 10 C.F.R. §784.
- GOGOs are subject to the requirements of 37 C.F.R. Part 501.
- Determination of Exceptional Circumstances (DEC): DOE has determined that
 exceptional circumstances exist that warrant the modification of the standard patent
 rights clause for small businesses and non-profit awardees under Bayh-Dole to maximize
 the manufacture of technologies supported by ARPA-E awards in the United States. The
 DEC, including a right of appeal, is dated September 9, 2013 and is available at the
 following link: http://energy.gov/gc/downloads/determination-exceptional-circumstances-under-bayh-dole-act-energy-efficiency-renewable. Please see Section
 IV.D and VI.B for more information on U.S. Manufacturing Requirements.

B. GOVERNMENT RIGHTS IN SUBJECT INVENTIONS

Where Prime Recipients and Subrecipients retain title to subject inventions, the U.S. Government retains certain rights.

1. GOVERNMENT USE LICENSE

The U.S. Government retains a nonexclusive, nontransferable, irrevocable, paid-up license to practice or have practiced for or on behalf of the United States any subject invention throughout the world. This license extends to contractors doing work on behalf of the Government.

2. MARCH-IN RIGHTS

The U.S. Government retains march-in rights with respect to all subject inventions. Through "march-in rights," the Government may require a Prime Recipient or Subrecipient who has elected to retain title to a subject invention (or their assignees or exclusive licensees), to grant a license for use of the invention. In addition, the Government may grant licenses for use of the subject invention when Prime Recipients, Subrecipients, or their assignees and exclusive licensees refuse to do so.

The U.S. Government may exercise its march-in rights if it determines that such action is necessary under any of the four following conditions:

- The owner or licensee has not taken or is not expected to take effective steps to achieve practical application of the invention within a reasonable time;
- The owner or licensee has not taken action to alleviate health or safety needs in a reasonably satisfactory manner;
- The owner has not met public use requirements specified by Federal statutes in a reasonably satisfactory manner; or
- The U.S. Manufacturing requirement has not been met.

C. RIGHTS IN TECHNICAL DATA

Data rights differ based on whether data is first produced under an award or instead was developed at private expense outside the award.

- Background or "Limited Rights Data": The U.S. Government will not normally require
 delivery of technical data developed solely at private expense prior to issuance of an
 award, except as necessary to monitor technical progress and evaluate the potential
 of proposed technologies to reach specific technical and cost metrics.
- Generated Data: Pursuant to special statutory authority for SBIR/STTR awards, data generated under ARPA-E SBIR/STTR awards may be protected from public disclosure for twenty years from the date of award in accordance with provisions that will be set forth in the award. In addition, invention disclosures may be protected from public disclosure for a reasonable time in order to allow for filing a patent application.

D. PROTECTED PERSONALLY IDENTIFIABLE INFORMATION

Applicants may not include any Protected Personally Identifiable Information (Protected PII) in their submissions to ARPA-E. Protected PII is defined as data that, if compromised, could cause harm to an individual such as identity theft. Listed below are examples of Protected PII that Applicants must not include in their submissions.

- Social Security Numbers in any form;
- Place of Birth associated with an individual;
- Date of Birth associated with an individual;
- Mother's maiden name associated with an individual;
- Biometric record associated with an individual;
- Fingerprint;
- Iris scan;
- DNA;
- Medical history information associated with an individual;
- Medical conditions, including history of disease;
- Metric information, e.g. weight, height, blood pressure;
- Criminal history associated with an individual;
- Ratings;
- Disciplinary actions;
- Performance elements and standards (or work expectations) are PII when they are so
 intertwined with performance appraisals that their disclosure would reveal an
 individual's performance appraisal;
- Financial information associated with an individual;
- Credit card numbers;
- Bank account numbers; and
- Security clearance history or related information (not including actual clearances held).

E. FOAs AND FOA MODIFICATIONS

FOAs are posted on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/), Grants.gov (https://www.fedconnect.net/FedConnect/). Any modifications to the FOA are also posted to these websites. You can receive an e-mail when a modification is posted by registering with FedConnect as an interested party for this FOA. It is recommended that you register as soon as possible after release of the FOA to ensure that you receive timely notice of any modifications or other announcements. More information is available at https://www.fedconnect.net.

F. OBLIGATION OF PUBLIC FUNDS

The Contracting Officer is the only individual who can make awards on behalf of ARPA-E or obligate ARPA-E to the expenditure of public funds. A commitment or obligation by any individual other than the Contracting Officer, either explicit or implied, is invalid.

ARPA-E awards may not be transferred, assigned, or assumed without the prior written consent of a Contracting Officer.

G. REQUIREMENT FOR FULL AND COMPLETE DISCLOSURE

Applicants are required to make a full and complete disclosure of the information requested in the Business Assurances & Disclosures Form. Disclosure of the requested information is mandatory. Any failure to make a full and complete disclosure of the requested information may result in:

- The rejection of a Concept Paper, Full Application, and/or Reply to Reviewer Comments;
- The termination of award negotiations;
- The modification, suspension, and/or termination of a funding agreement;
- The initiation of debarment proceedings, debarment, and/or a declaration of ineligibility for receipt of Federal contracts, subcontracts, and financial assistance and benefits; and
- Civil and/or criminal penalties.

H. RETENTION OF SUBMISSIONS

ARPA-E expects to retain copies of all Concept Papers, Full Applications, Replies to Reviewer Comments, and other submissions. No submissions will be returned. By applying to ARPA-E for funding, Applicants consent to ARPA-E's retention of their submissions.

I. Marking of Confidential Information

ARPA-E will use data and other information contained in Concept Papers, Full Applications, and Replies to Reviewer Comments strictly for evaluation purposes.

Concept Papers, Full Applications, Replies to Reviewer Comments, and other submissions containing confidential, proprietary, or privileged information must be marked as described below. Failure to comply with these marking requirements may result in the disclosure of the unmarked information under the Freedom of Information Act or otherwise. The U.S. Government is not liable for the disclosure or use of unmarked information, and may use or disclose such information for any purpose.

The cover sheet of the Concept Paper, Full Application, Reply to Reviewer Comments, or other submission must be marked as follows and identify the specific pages containing confidential, proprietary, or privileged information:

Notice of Restriction on Disclosure and Use of Data:

Pages [___] of this document may contain confidential, proprietary, or privileged information that is exempt from public disclosure. Such information shall be used or disclosed only for evaluation purposes or in accordance with a financial assistance or loan agreement between the submitter and the Government. The Government may use or disclose any information that is not appropriately marked or otherwise restricted, regardless of source.

The header and footer of every page that contains confidential, proprietary, or privileged information must be marked as follows: "Contains Confidential, Proprietary, or Privileged Information Exempt from Public Disclosure." In addition, every line and paragraph containing proprietary, privileged, or trade secret information must be clearly marked with double brackets or highlighting.

J. ADDITIONAL NOTICES

- This FOA is intended for informational purposes and reflects current planning. If there is any inconsistency between the information contained herein and the terms of any resulting SBIR or STTR funding agreement, the terms of the funding agreement are controlling.
- Before award of an SBIR or STTR funding agreement, ARPA-E may request the selectee
 to submit certain organizational, management, personnel, and financial information to
 assure responsibility of the Prime Recipient. In addition, selectees will be required to
 make certain legal commitments at the time of execution of funding agreements
 resulting from this FOA. ARPA-E encourages Prime Recipients to review the Model
 Cooperative Agreement for SBIR/STTR Awards, which is available at https://arpae.energy.gov/?q=site-page/funding-agreements.
- ARPA-E will not pay a fee or profit on Cooperative Agreements resulting from this FOA to recipients or subrecipients.
- Actual or suspected fraud, waste, or abuse may be reported to the DOE Office of Inspector General (OIG) at 1-800-541-1625.

K. COMPLIANCE AUDIT REQUIREMENT

A prime recipient organized as a for-profit entity expending \$750,000 or more of DOE funds in the entity's fiscal year (including funds expended as a Subrecipient) must have an annual compliance audit performed at the completion of its fiscal year. For additional information, refer to Subpart F of: (i) 2 C.F.R. Part 200, and (ii) 2 C.F.R. Part 910.

If an educational institution, non-profit organization, or state/local government is either a Prime Recipient or a Subrecipient, and has expended \$750,000 or more of Federal funds in the entity's fiscal year, the entity must have an annual compliance audit performed at the completion of its fiscal year. For additional information refer to Subpart F of 2 C.F.R. Part 200.

IX. GLOSSARY

Applicant: The entity that submits the application to ARPA-E. In the case of a Project Team, the Applicant is the lead organization listed on the application.

Application: The entire submission received by ARPA-E, including the Concept Paper, Full Application, and Reply to Reviewer Comments.

ARPA-E: is the Advanced Research Projects Agency – Energy, an agency of the U.S. Department of Energy.

Cost Sharing: is the portion of project costs not paid by Federal funds (unless otherwise authorized by Federal statue). Refer to 2 C.F.R. § 200.29.

Deliverable: A deliverable is the quantifiable goods or services that will be provided upon the successful completion of a project task or sub-task.

DOE: U.S. Department of Energy.

DOE/NNSA: U.S. Department of Energy/National Nuclear Security Administration

FFRDCs: Federally Funded Research and Development Centers.

FOA: Funding Opportunity Announcement.

GOCOs: U.S. Government Owned, Contractor Operated laboratories.

GOGOs: U.S. Government Owned, Government Operated laboratories.

Milestone: A milestone is the tangible, observable measurement that will be provided upon the successful completion of a project task or sub-task.

Nonprofit Organizations (or nonprofits): Has the meaning set forth at 2 C.F.R. § 200.70.

Prime Recipient: The signatory to the funding agreement with ARPA-E.

PI: Principal Investigator.

Project Team: A Project Team consists of the Prime Recipient, Subrecipients, and others performing any of the research and development work under an ARPA-E funding agreement,

whether or not costs of performing the research and development work are being reimbursed under any agreement.

SBA: U.S. Small Business Administration.

SBIR: Small Business Innovation Research Program.

Small Business Concern: A for-profit entity that: (1) maintains a place of business located in the United States; (2) operates primarily within the United States or makes a significant contribution to the United States economy through payment of taxes or use of American products, materials or labor; (3) is an individual proprietorship, partnership, corporation, limited liability company, joint venture, association, trust, or cooperative; and (4) meets the size eligibility requirements set forth in 13 C.F.R. § 121.702. Where the entity is formed as a joint venture, there can be no more than 49% participation by foreign business entities in the joint venture.

Standalone Applicant: An Applicant that applies for funding on its own, not as part of a Project Team.

STTR: Small Business Technology Transfer Program.

Subject Invention: Any invention conceived or first actually reduced to practice under an ARPA-E funding agreement.

Task: A task is an operation or segment of the work plan that requires both effort and resources. Each task (or sub-task) is connected to the overall objective of the project, via the achievement of a milestone or a deliverable.

Total Project Cost: The sum of the Prime Recipient share and the Federal Government share of total allowable costs. The Federal Government share generally includes costs incurred by GOGOs, FFRDCs, and GOCOs.