FINANCIAL ASSISTANCE
FUNDING OPPORTUNITY ANNOUNCEMENT

ADVANCED RESEARCH PROJECTS AGENCY – ENERGY (ARPA-E)
U.S. DEPARTMENT OF ENERGY

TRANSPORTATION ENERGY RESOURCES FROM RENEWABLE AGRICULTURE (TERRA)

Announcement Type: Modification 01 Modification 02
Funding Opportunity No. DE-FOA-0001211
CFDA Number 81.135

<table>
<thead>
<tr>
<th>FOA Issue Date:</th>
<th>October 1, 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Deadline for Questions to ARPA-E-CO@hq.doe.gov:</td>
<td>5 PM ET, November 10, 2014</td>
</tr>
<tr>
<td>Submission Deadline for Concept Papers:</td>
<td>5 PM ET, November 17, 2014</td>
</tr>
<tr>
<td>Second Deadline for Questions to ARPA-E-CO@hq.doe.gov:</td>
<td>5 PM ET, February 23, 2015</td>
</tr>
<tr>
<td>Submission Deadline for Full Applications:</td>
<td>5 PM ET, March 2, 2015</td>
</tr>
<tr>
<td>Submission Deadline for Replies to Reviewer Comments:</td>
<td>5 PM ET, April 15, 2015</td>
</tr>
<tr>
<td>Expected Date for Selection Notifications:</td>
<td>May 2015</td>
</tr>
<tr>
<td>Total Amount to Be Awarded</td>
<td>Approximately $30 million, subject to the availability of appropriated funds.</td>
</tr>
<tr>
<td>Anticipated Awards</td>
<td>ARPA-E may issue one, multiple, or no awards under this FOA. Awards may vary between $250,000 and $10 million.</td>
</tr>
</tbody>
</table>

- For eligibility criteria, see Section III.A of the FOA.
- For cost share requirements under this FOA, see Section III.B of the FOA.
- To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, see Section IV.H.1 of the FOA.
- Applicants are responsible for meeting each submission deadline. Applicants are strongly encouraged to submit their applications at least 48 hours in advance of the submission deadline.
- ARPA-E will not review or consider noncompliant or nonresponsive applications. For detailed guidance on compliance and responsiveness criteria, see Sections III.C.1 and III.C.2 of the FOA.

Questions about this FOA? Email ARPA-E-CO@hq.doe.gov (with FOA name and number in subject line); see FOA Sec. VII.A. Problems with ARPA-E eXCHANGE? Email ExchangeHelp@hq.doe.gov (with FOA name and number in subject line).
MODIFICATIONS

All modifications to the Funding Opportunity Announcement (FOA) are highlighted in yellow in the body of the FOA.

<table>
<thead>
<tr>
<th>Mod. No.</th>
<th>Date</th>
<th>Description of Modifications</th>
</tr>
</thead>
</table>
| 01 | 1/21/2015 | • Inserted certain deadlines, including the deadlines for submitting questions and Full Applications. See Cover Page and Required Documents Checklist.
• Corrected FOA section references, see Sections I.D and I.E of the FOA.
• Inserted paragraph regarding a required dataset, see Section I.D of the FOA.
• Updated “platform” to “platform(s),” in explanation of Secondary Technical Targets, see Section I.E of the FOA.
• Clarified target for Category 4.1: Genetic Basis for Biomass Accumulation in Section I.E of the FOA.
• Provided C.F.R. update, see Section II.B.3 of the FOA.
• Updated C.F.R. information, see Section III.B.6 of the FOA.
• Revised the following sections of the FOA to provide guidance on required application forms and the content and form of Full Applications and Replies to Reviewer Comments: Required Documents Checklist and Sections IV.D, IV.E, IV.G of the FOA. Document templates are provided on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov).
• Inserted criteria that ARPA-E will use to evaluate Full Applications, see Section V.A.2 of the FOA.
• Inserted criteria that ARPA-E will use to evaluate Replies to Reviewer Comments in Section V.A.3 of the FOA.
• Inserted Program Policy Factors, see Section V.B.1 of the FOA.
• Inserted information on the anticipated announcement and award dates, see Section V.C of the FOA.
• Inserted information concerning Full Application Notifications, see Section VI.A.3 of the FOA.
• Inserted Administrative and National Policy Requirements, see Section VI.B of the FOA.
• Inserted Reporting Requirements. See Section VI.C of the FOA.
• Inserted regulations applicable to resulting awards, see Section VIII.I of the FOA. |
| 02 | 2/02/2015 | • Clarified Base Cost Share Requirement, see Section III.B.1 of the FOA.
• Clarified Reduced Cost Share Requirement, see Section III.B.3 of the FOA.
• Updated C.F.R. information, see Sections III.B.6 and IV.G.2 of the FOA. |
1. Registration in ARPA-E eXCHANGE .. - 38 -
2. Concept Papers .. - 38 -
3. Full Applications .. - 39 -
4. Reply to Reviewer Comments .. - 39 -
5. Pre-Selection Clarifications and “Down-Select” Process - 39 -
6. Selection for Award Negotiations .. - 40 -
7. Mandatory Webinar .. - 40 -

B. APPLICATION FORMS .. - 40 -

C. CONTENT AND FORM OF CONCEPT PAPERS - 40 -
1. Concept Summary ... - 41 -
2. Innovation and Impact ... - 42 -
3. Proposed Work ... - 42 -
4. Team Organization and Capabilities .. - 43 -

D. CONTENT AND FORM OF FULL APPLICATIONS - 43 -
1. First Component: Technical Volume ... - 45 -
2. Second Component: SF-424 .. - 53 -
3. Third Component: Budget Justification Workbook/SF-424A - 54 -
4. Fourth Component: Summary for Public Release - 55 -
5. Fifth Component: Summary Slide ... - 56 -
6. Sixth Component: Business Assurances & Disclosures Form - 57 -
7. Seventh Component: TERRA Robotics and Breeding Workbook - 58 -

E. CONTENT AND FORM OF REPLIES TO REVIEWER COMMENTS - 60 -

F. INTERGOVERNMENTAL REVIEW .. - 60 -

G. FUNDING RESTRICTIONS .. - 61 -
1. ALLOWABLE COSTS .. - 61 -
2. PRE-AWARD COSTS .. - 61 -
3. PATENT COSTS ... - 61 -
4. CONSTRUCTION ... - 62 -
5. FOREIGN TRAVEL .. - 62 -
6. PERFORMANCE OF WORK IN THE UNITED STATES - 62 -
7. PURCHASE OF NEW EQUIPMENT .. - 62 -
8. TECHNOLOGY TRANSFER AND OUTREACH - 63 -
9. LOBBYING .. - 64 -
10. CONFERENCE SPENDING ... - 64 -

H. OTHER SUBMISSION REQUIREMENTS - 65 -
1. Use of ARPA-E eXCHANGE .. - 65 -

V. APPLICATION REVIEW INFORMATION .. - 66 -

A. CRITERIA ... - 66 -
1. Criteria for Concept Papers ... - 66 -
2. Criteria for Full Applications ... - 67 -
3. Criteria for Replies to Reviewer Comments - 69 -

B. REVIEW AND SELECTION PROCESS .. - 69 -
1. Program Policy Factors ... - 69 -
2. ARPA-E Reviewers ... - 70 -
3. ARPA-E Support Contractor ... - 70 -

Questions about this FOA? Email ARPA-E-CO@hq.doe.gov (with FOA name and number in subject line); see FOA Sec. VII.A.

Problems with ARPA-E eXCHANGE? Email ExchangeHelp@hq.doe.gov (with FOA name and number in subject line).
REQUIRED DOCUMENTS CHECKLIST

For an overview of the application process, see Section IV.A of the FOA.

For guidance regarding requisite application forms, see Section IV.B of the FOA.

For guidance regarding the content and form of Concept Papers, Full Applications, and Replies to Reviewer Comments, see Sections IV.C, IV.D, and IV.E of the FOA.

<table>
<thead>
<tr>
<th>SUBMISSION COMPONENTS</th>
<th>OPTIONAL/MANDATORY</th>
<th>FOA SECTION</th>
<th>DEADLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Paper</td>
<td>Mandatory</td>
<td>IV.C</td>
<td>5 PM ET, November 17, 2014</td>
</tr>
<tr>
<td>Full Application</td>
<td>Mandatory</td>
<td>IV.D</td>
<td>5 PM ET, March 2, 2015</td>
</tr>
</tbody>
</table>

- **Concept Paper**
 - Each Applicant must submit a Concept Paper in Adobe PDF format by the stated deadline. The Concept Paper must not exceed 5 pages in length and must include the following:
 - Concept Summary
 - Innovation and Impact
 - Proposed Work
 - Team Organization and Capabilities

- **Full Application**
 - Each Applicant must submit a Technical Volume in Adobe PDF format by the stated deadline. Applicants may use the Technical Volume template available on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov). The Technical Volume must include the following:
 - Executive Summary (1 page max.)
 - Sections 1-5 (30 pages max. for Categories 2, 3 and 4, and 40 pages max. for Categories 1 and 5)
 - 1. Innovation and Impact
 - 2. Proposed Work
 - 3. Team Organization and Capabilities
 - 4. Technology to Market
 - 5. Budget
 - Bibliographic References (no page limit)
 - Personal Qualification Summaries (each PQS limited to 3 pages in length, no cumulative page limit)
 - The Technical Volume must be accompanied by:
 - SF-424 (no page limit, Adobe PDF format);
 - Budget Justification Workbook/SF424A (no page limit, Microsoft Excel format)
 - Summary for Public Release (250 words max., Adobe PDF format);
 - Summary Slide (1 page limit, Microsoft PowerPoint format) – Applicants may use the Summary Slide template available on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov); and
 - Completed and signed Business Assurances & Disclosures Form (no page limit, Adobe PDF format).
 - TERRA Robotics and Breeding Workbook for
<table>
<thead>
<tr>
<th>Categories 1 and 5 (required) and Categories 2, 3, and 4 (as applicable) - Applicants may use the template available on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov) (no page limit. Microsoft Excel format).</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reply to Reviewer Comments</td>
<td>• Each Applicant may submit a Reply to Reviewer Comments in Adobe PDF format. This submission is optional. Applicants may use the Reply to Reviewer Comments template available on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov). The Reply may include:</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>o Up to 2 pages of text; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Up to 1 page of images.</td>
<td></td>
</tr>
</tbody>
</table>
I. FUNDING OPPORTUNITY DESCRIPTION

A. AGENCY OVERVIEW

The Advanced Research Projects Agency – Energy (ARPA-E), an organization within the Department of Energy, is chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), to support the creation of transformational energy technologies and systems through funding and managing Research and Development (R&D) efforts. Originally chartered in 2007, the Agency was first funded through the American Recovery and Reinvestment Act of 2009.

The mission of ARPA-E is to identify and fund research to translate science into breakthrough energy technologies that are too risky for the private sector and that, if successfully developed, will create the foundation for entirely new industries.

Successful projects will address at least one of ARPA-E’s two Mission Areas:

1. Enhance the economic and energy security of the United States through the development of energy technologies that result in:
 a. reductions of imports of energy from foreign sources;
 b. reductions of energy-related emissions, including greenhouse gases; and
 c. improvement in the energy efficiency of all economic sectors.
2. Ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies.

ARPA-E funds applied research and development. ARPA-E exists to fund applied research and development, defined by the Office of Management and Budget as a “study (designed) to gain knowledge or understanding necessary to determine the means by which a recognized and specific need may be met” and as the “systematic application of knowledge or understanding, directed toward the production of useful materials, devices, and systems or methods, including design, development, and improvement of prototypes and new processes to meet specific requirements.” ARPA-E funds technology-focused applied research to create real-world solutions to important problems in energy creation, distribution and use and, as such, will not support basic research, defined as a “systematic study directed toward fuller knowledge or understanding of the fundamental aspects of phenomena and of observable facts without specific applications towards processes or products in mind.” While it is anticipated that in some instances some minor aspects of fundamental science will be clarified or uncovered during the conduct of the supported applied research, the major portion of activities supported by ARPA-E are directed towards applied research and development of new technologies.

While all technology-focused applied research will be considered, two instances are especially fruitful for the creation of transformational technologies:

Questions about this FOA? Email ARPA-E-CO@hq.doe.gov (with FOA name and number in subject line); see FOA Sec. VII.A. Problems with ARPA-E eXCHANGE? Email ExchangeHelp@hq.doe.gov (with FOA name and number in subject line).
• the first establishment of a technology based upon recently elucidated scientific principles; and
• the synthesis of scientific principles drawn from disparate fields that do not typically intersect.

![Diagram](image)

Figure 1: Description of transformational and disruptive technologies in terms of cost per unit performance versus time or scale. ARPA-E seeks to support research that establishes new learning curves that lead to disruptive technologies.

ARPA-E exists to support transformational, rather than incremental research. Technologies exist on learning curves (Figure 1). Following the creation of a technology, refinements to that technology and the economies of scale that accrue as manufacturing and widespread distribution develop drive technology down that learning curve until an equilibrium cost/performance is reached. While this incremental improvement of technology is important to the ultimate success of a technology in the marketplace, ARPA-E exists to fund transformational research – i.e., research that creates fundamentally new learning curves rather than moving existing technologies down their learning curves.

ARPA-E funded technology has the potential to be disruptive in the marketplace. The mere creation of a new learning curve does not ensure market penetration. Rather, the ultimate value of a technology is determined by the marketplace, and impactful technologies ultimately become disruptive – that is, they are widely adopted and displace existing technologies from the marketplace or create entirely new markets. Energy technologies typically become disruptive at maturity rather than close to inception and the maturation of nascent technologies often require significant incremental development to drives the technology down its natural learning curve to its ultimate equilibrium (see Figure 1 above). Such development might include modification of the technology itself, the means to produce and distribute that...
technology, or both. Thus, while early incarnations of the automobile were transformational in the sense that they created a fundamentally new learning curve for transportation, they were not disruptive, because of the unreliability and high cost of early automobiles. Continuous, incremental refinement of the technology ultimately led to the Ford Model T: as the first affordable, reliable, mass-produced vehicle, the Model T had a disruptive effect on the transportation market.

ARPA-E will not support technology development for extended periods of time; rather, ARPA-E supports the initial creation of technology. Following initial testing of the first prototype of a device, a system, or a process, other Federal agencies and the private sector will support the incremental development necessary to bring the technology to market.

While ARPA-E does not require technologies to be disruptive at the conclusion of ARPA-E funding, ARPA-E will not support technologies that cannot be disruptive even if successful. Examples of such technologies are approaches that require elements with insufficient abundances of materials to be deployed at scale, or technologies that could not scale to levels required to be impactful because of, for example, physical limits to productivity.

ARPA-E will not support basic research aimed at discovery and fundamental knowledge generation, nor will it undertake large-scale demonstration projects of existing technologies. ARPA-E is not a substitute for existing R&D organizations within the Department of Energy, but rather complements existing organizations by supporting R&D objectives that are transformational and translational. Applicants interested in receiving basic research financial assistance should work with the Department of Energy’s Office of Science (http://science.energy.gov/). Similarly, projects focused on the improvement of existing technology platforms may be appropriate for support by the applied programs – for example, the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy (http://fossil.energy.gov/), the Office of Nuclear Energy (http://nuclear.energy.gov/), and the Office of Electricity Delivery and Energy Reliability (http://energy.gov/oe/office-electricity-delivery-and-energy-reliability).

B. **PROGRAM OVERVIEW**

1. **SUMMARY**

There is an urgent need to accelerate energy crop development for the production of renewable transportation fuels from biomass. Recent technological advancements have now made it possible to extract massive volumes of genetic, physiological, and environmental data from certain crops, but, even with these resources, the data still cannot be processed into the knowledge needed to predict crop performance in the field. This knowledge is required to improve the breeding development pipeline for energy crops. Building upon precision agriculture innovations and data-intensive computational approaches, ARPA-E believes that it is now possible to accelerate plant breeding, using robust high-throughput precision phenotyping
systems, to quantify important agronomic traits in the field throughout the entire lifecycle of an individual plant, and to associate these traits with their genetic and genomic properties. This ARPA-E program, Transportation Energy Resources from Renewable Agriculture (TERRA), is an investment in technologies that increase the precision, accuracy and throughput of energy crop breeding, to enable (a) new predictive algorithms for plant growth, (b) more detailed measurements for plant physiology, and (c) more sophisticated bioinformatics pipelines for gene discovery and trait association. TERRA will enable breeders to evaluate more individual plants, to select appropriate plants for breeding earlier in the growing season, to capture better information about them during their development, and to associate this information with the best genes to propagate. Success will be measured by the prospective ability to predict yield gains early, specifically, to identify which genes can improve carbon capture efficiency in newly cultivated bioenergy crops. Although other crops will be considered, this program intends to focus on energy sorghum as a model system because of its potential for improvement through breeding, its resources for genetic analysis, its geographic adaptability, and its commercial utility.

2. **Motivation**

Fuel used in the U.S. transportation sector has become more diverse in the past several years. While gasoline remains the dominant fuel, the market penetration of diesel, biofuels, and hybrid-electric systems is growing, eroding gasoline’s share of the light duty vehicle fuel market. This trend is too slow to reduce energy-related CO₂ emissions: petroleum remains, by far, the largest source of transportation fuel in the world, a significant, but non-renewable, resource. In 2013, 36% of U.S. energy consumption was from petroleum, producing 42% of its energy-related carbon dioxide emissions.¹ Thus, the more rapid development of transportation fuels with decreased, neutral, or negative carbon emissions is required to reduce the amount of foreign oil imports and limit the rate of increase of CO₂ in the atmosphere, addressing two of ARPA-E’s core missions.

Economical production of the large amounts of biomass needed to displace petroleum will require significant productivity and efficiency improvements from the agricultural sector, which is also responsible for human and animal nutrition. In 2014, the United Nations warned that world agriculture must increase its output 60% by 2050 (1.6% per year, on average) to support global population growth and economic development.² Meanwhile, Hall and Richards report that the annual genetic gain for the main cereal crops best varieties and hybrids falls well below 1.16–1.31% per year and are not able to satisfy projected growing demand.³ Consequently, the realization of commercially viable agriculture for energy purposes requires unprecedented increases in productivity and resource use efficiency.

A conventional breeding approach takes many years to improve crop varieties. The rate of crop improvement through breeding is strongly correlated to technology, increasing with better and more complete field data, i.e. the precision and accuracy of trait measurements and the throughput of screening. The ability to rapidly identify plants in a breeding population with desirable traits will increase the rate of genetic gain of the crop and improve the yield of bioenergy from agriculture.4

It is important to define the terminology of breeding: A **phenotype** is an observable or measurable physical trait, such as color, height, size, shape, behavior or chemical composition. Phenotype is determined by the individual’s **genotype**, the information encoded in the DNA polymers present in its genome, as well as how that genome interacts with the environment. **Phenotyping** is the measurement of phenotypes, a process that can require substantial effort and may be highly dependent on data interpretation by a plant breeder. The development of advanced plant phenotyping technologies is substantially behind that of genotyping, and thus poses a key bottleneck on the path toward increased bioenergy crop yields. While agriculture has the capability to increase biomass yields and mitigate the effects of anthropogenic greenhouse gas emissions, the slow pace of conventional breeding limits this capability. Advancing and integrating cutting edge technology phenotyping platforms in genomics, computational analytics, proximal sensing, and automation, within the TERRA program, will contribute to breaking through this barrier to bioenergy crop development.

3. **STATE OF THE ART**

Agricultural Phenotyping

Plants use solar energy to convert atmospheric CO2 into fixed carbon, which is then further used as a source of food, feed, fiber, and fuel. Plant breeding is the process of mating sexually compatible plants to generate agriculturally superior varieties. Traditional breeding methods are slow and inefficient; the challenge is to rapidly identify which genotype-phenotype combinations lead to substantial crop improvement from a large and diverse population.5

High throughput phenotyping technologies have been developed, and have the capability to accurately characterize large numbers of plants with much less time and labor than in the past. To date, these technologies have been applied only under tightly controlled laboratory and greenhouse conditions. Much of the technology improvement has focused on fully automated greenhouse systems using plants grown in uniform pots under precise conditions, or laboratory techniques that aim to correlate tissue culture observations with those of plants in the field.6,7,8,9,10 While these systems are valuable, they are not easily scalable and the relationship

to crop responses in field situations is controversial, because soil volumes, solar radiation, wind speeds and evaporation rates in greenhouses are often much lower than in the field.11,12,13

The set of tools that currently exists for use in field environments is small and underdeveloped. These tools range from handheld devices aimed at capturing reflectance and spectral data, to prototype mobile platforms outfitted with crop sensors.14,15,16,17,18 Today, the primary tool for measuring phenotype in the field is the harvest combine, which accurately collects the most relevant performance metric: terminal yield. However, terminal yield is captured destructively only at the very end of the season, and provides very little feedback or insight on crop development throughout the growing season. Thus, there is an urgent need for robust field-based high-throughput phenotyping systems for quantifying agronomic important traits at field scales throughout the crop lifecycle.19,20

ENERGY CROPS

Numerous crops are under consideration for energy production, and many factors must be taken into account when selecting an energy crop for a particular growing location.21 *Sorghum bicolor* (a phenotypically-diverse species, currently available in grain, sweet and energy varieties) is a highly productive C4 grass that has been identified as a particularly useful crop for improvement. It is an important cultivated food, feed, and bioenergy crop worldwide, and is the third most widely cultivated cereal crop in the U.S., which is also its number one producer and exporter.22 Among sorghum types, energy sorghum has exceptional potential as a high biomass bioenergy crop, with yields in certain regions reaching nearly 60 dT ha-1 (dry metric tons per hectare) under ideal conditions. Energy sorghum adapts well to drought and heat conditions that are inhospitable to food crops, making it an excellent model for studying plant-environment interactions. In addition, sorghum is an annual crop, meaning that it can be bred

\begin{itemize}
 \item 10 Michael Malone, PhenoDay. 2011: Wageningen, Netherlands.
 \item 11 J. Cobb, G. DeClerck, A. Greenberg, R. Clark, S. McCouch, Theoretical Applied Genetics, 2013. 126(4): p. 867-887.
 \item 12 Robert T Furbank and Mark Tester, 2011. 16(12): p. 635-644.
 \item 14 Robert T Furbank and Mark Tester, Trends in plant science, 2011. 16(12): p. 635-644.
 \item 17 P. Andrade-Sanchez, John Heun, Michael Gore, Andrew French, E. Carmo-Silva, and M. Salvucci, Proceedings of the 2012 American Society of Agricultura and Biological Engineers Annual International Meeting. 2012: Dallas, TX.
 \item 18 Fabio Fiorani and Ulrich Schurr, Annual review of plant biology, 2013. 64: p. 267-291.
 \item 19 Robert T Furbank and Mark Tester, Trends in plant science, 2011. 16(12): p. 635-644.
 \item 22 Crop Production 2013 Summary, United States Department of Agriculture, http://usda.mannlib.cornell.edu/usda/current/CropProdSu/CropProdSu-01-10-2014.pdf
\end{itemize}
rapidly and evaluated easily in diverse environments to enable the testing and optimization of automated precision phenotyping, both in the field and in well-controlled environments.23,24

GENOMICS AND BIOINFORMATICS

The field of genomics aims to decipher the information content of the genome. Enabled by the extremely rapid progress of high-throughput gene sequencing technologies, valuable computational analysis at the genomic level using advanced bioinformatics techniques is now possible. The genome interacts with the environment in a complex manner to form a plant’s many phenotypes, which develop over the plant’s lifecycle. The bioinformatics field of statistical genetics aims to elucidate the dependence of a particular genetic background on a phenotype, given environmental inputs. Analytically, understanding and predicting this interaction between genetics (G) and environment (E) that produces a particular phenotype (P), as given by Eq 1, is the central goal of the TERRA program.

\[
P = G \times E \quad \text{(Eq. 1)}
\]

Determination of a genotype need not require complete genome sequencing. Biologists have traditionally used genomic assays such as allele-specific polymerase chain reaction (PCR), which requires the \textit{a priori} identification of characteristic alleles (alternative gene forms) in the genome. The most common of these changes are called single nucleotide polymorphisms (SNPs)25; identification of common SNPs in populations has been the subject of much research over the past few decades. As illustrated by Eq 1, assaying these known SNPs in energy crop populations and correlating them with phenotype is one of the foundations of statistical genetics.

Marker-assisted breeding has used selected genetic landmarks such as SNPs for decades to help breeders determine which lines to cross to confer given phenotypes, usually with little knowledge of the underlying physiological basis. Inexpensive DNA sequencing has added depth of information to this field, leading to the sub-discipline of genomic prediction. In genomic prediction studies, models of all the SNP data can be created, allowing for a prediction and earlier selection of the phenotype of offspring from knowledge of only the parental genotypes. Genome Wide Association (GWA) studies are empirical studies that use statistical genetic tools to associate discrete or continuous traits within a population to the specific DNA sequences that underlie that variation. GWA studies can identify regions of the genome (known as quantitative trait loci, or QTLs) that are statistically associated with the variation in phenotype. The genes or regulatory elements within each QTL are inferred to be the mediators of the variation, and the particular genetic differences that comprise those variants.

25 Xuehui Huang and Bin Han, \textit{.}, 2014. 65: p. 531-551.
A commonality between GWA and genomic prediction studies is the goal of predicting phenotypes from genetic information. In the context of agriculture, accurate and early prediction could enable a transformational shift in breeding resources: tens of thousands of crosses could be analyzed in silico, and only those with the highest probability of an improved phenotype moved into the breeding pipeline. Because energy crops have received much less attention from breeders than food and feed crops (and therefore have much more unrealized genetic potential)26,27,28, rapid analysis is particularly important. However, realizing predictive genomics in bioenergy crops depends on the generation and availability of large amounts of high quality phenotypic data.

SENSING AND AUTOMATION

Sensors and automation have already made significant contributions toward lowering production costs in agriculture, reducing manual labor and raising the quality of production.29,30 Over the past decade, automated precision farming technologies that employ vision systems, laser sensors, and satellite positioning instruments have emerged. The most widely adopted technologies include autonomous equipment navigation, yield mapping, and variable rate technologies for planting and application of fertilizers and crop protection chemicals.31 The investments in precision agriculture have enabled better specificity in the field as well. As opposed to classical techniques of measuring or manipulating the field that focus on entire rows or plots, high-precision systems incorporate GPS and other positional accuracy aids to enable plant level specificity of 2 cm or better.32

Current methods for plant phenotyping using sensor measurements span many modalities and include imaging across various spectral channels, fluorescence measurements, topographical analysis using LiDAR or stereo cameras, and environmental sensing.33,34,35,36,37,38 Numerous

29 Yael Edan, Shufeng Han, and Naoshi Kondo, 2009, Springer. p. 1095-1128.
34 Joshua N Cobb, Genevieve DeClerck, Anthony Greenberg, Randy Clark, and Susan McCouch, Theoretical and Applied Genetics, 2013. 126(4): p. 867-887.
phenotypes are important for agricultural breeder selections, but accurate measurements of aboveground biomass throughout the growing season (from which growth rates can be derived) are of critical importance. Such estimates are possible using greenhouse systems that measure individual plants from several angles (R values of 0.98 have been demonstrated). Furthermore, some of these collection methods are faster than others. For example, hyperspectral and fluorescence measurements take much longer than camera, thermal, or reflectance measurements, but provide a wealth of additional data.

Spectroscopic measurements taken in the field can be correlated with quantitative phenotypes of interest using indices such as leaf area index (LAI), vegetation fraction, and canopy nitrogen. These indices are typically measured by taking reflectance spectroscopy measurements of two or more specific spectral bands. Examples include the Normalized Difference Vegetation Index (NDVI) and Visible Atmospheric Resistant Index (VARI) indices. Such methods have spawned a small community of researchers discovering new spectral indices that correlate with various phenotypic quantities of interest. Combining indices or adding other modalities such as thermal imaging can further enhance phenotypic accuracy. This approach, however, has several shortcomings: (1) the correlation between the proposed index and a quantity of interest is often weak, (2) these indices often do not account for changes in the environment, weather, or across testing domains, and do not necessarily translate among different crops/species, (3) the indices often have limited observational regimes, making prediction above a certain value (of LAI, for example) impossible, and (4) the development of these indices is largely empirical. Researchers propose a new index (for example, selecting two spectral channels and taking their ratio) and then determine its correlation with some phenotypic quantity of interest. Not surprisingly, this often leads to weak correlations that lack robustness.

As researchers have deployed the first set of field-based automated sensing platforms for phenotyping, critical tradeoffs have emerged between collection time, phenotypes of interest, and data volume or data precision. At this point breeders still have to choose between employing a slow system (≤ 2 km h$^{-1}$) to achieve plant-level specificity, or a fast system such as an aerial survey that can cover an entire field within seconds but focuses more on plot-level specificity. Neither of these approaches offers breeders access to data on individual plants with the capacity for frequent (daily or better) updates across a large area (tens to hundreds of acres). And without knowing which phenotypes are the most essential, selecting the appropriate sensor suite and corresponding collection rate is exceedingly challenging.

C. PROGRAM OBJECTIVES

The overall objective of the TERRA program is to develop tools that enable an increase in the rate and extent of genetic improvement of the yield of bioenergy crops grown in the field. If successful, the program will enhance land use efficiency, reduce competition between bioenergy and food crops, improve environmental sustainability, and provide a more stable supply of biomass for transportation fuels and bio-refineries.

As shown in Equation 2, the rate of genetic gain or crop improvement per cycle of breeding R_t is related to the intensity of genetic selection, i, the extent of phenotypic variation controlled by genetics within the materials being screened (phenotypic variance, σ_A), the selection accuracy (r) impacted by the heritability of the trait(s) under selection, and the length of the breeding cycle, y. Automated precision phenotyping for renewable energy has the potential to increase the intensity of genetic selection by providing more detailed phenotypic information (multiple times during a growing season, with spatial information and more information content) and by allowing more genetic material with a greater range of phenotypes to be screened per breeding cycle, thus accelerating the rate of genetic gain.

Therefore, the TERRA program will emphasize development of innovative phenotyping systems that increase the precision, accuracy and throughput of breeding by developing approaches that can predict terminal phenotypes earlier in the growth cycle.

As shown in Figure 2, ARPA-E seeks to establish multidisciplinary teams to leverage advancements in sensor technologies, computational analytics and low-cost nucleotide sequencing. It is the objective of the program to establish the key intermediate phenotypes related to yield, that can be collected with enough accuracy to predict the growth of an individual plant or population of plants of a particular genetic makeup, and to do so across a high volume (multiple thousands of breeder plots) at the field level.

$$R_t = \frac{ir\sigma_A}{y}$$

R_t (genetic gain over time)
i (selection intensity)
r (selection accuracy)
σ_A (genetic variance)
y (years/cycle)

J. Poland, KSU - ARPAE Workshop 2014

Equation 2: Breeders’ Yield
Figure 2: ARPA-E Advanced Phenotyping Vision

ARPA-E Plant Phenotyping Workshop. 2014: Chicago, IL.

Questions about this FOA? Email ARPA-E-CO@hq.doe.gov (with FOA name and number in subject line); see FOA Sec. VII.A.

Problems with ARPA-E eXCHANGE? Email ExchangeHelp@hq.doe.gov (with FOA name and number in subject line).
D. **TECHNICAL CATEGORIES OF INTEREST**

Precision phenotyping of bioenergy crops under natural field conditions is a complex systems challenge that requires the integration of multiple scientific and engineering disciplines.

ARPA-E is primarily interested in applications that propose complete systems solutions that combine genetics, automation, sensors, and computation into integrated phenotyping platforms. Each platform should be capable of quantifying, modeling, and accurately predicting plant performance in the field and include provisions for data quality control, standardization, and digital communication of data and algorithms to the community. However, applications are also sought for partial system solutions that comprise the key components of the complete integrated phenotyping system: high throughput automated hardware and sensing technology; computational solutions for phenotype selection and prediction; and genomic and bioinformatic genotype by phenotype trait associations. Finally, applications are also sought for programmatic reference data generation and hosting.

CATEGORY 1: COMPLETE INTEGRATED PHENOTYPING SYSTEMS SOLUTIONS

ARPA-E seeks applications describing complete solutions that span crop breeding, field automation, plant sensing, genomics, computational analytics and bioinformatics, all of which are critical to the success of the TERRA program. This program should be conducted under both field and controlled environmental conditions, where exploration of genotype-phenotype associations in controlled environments can be used to help predict trait associations in the field.

Applicants should propose automated host platforms and sensor suites, along with the initial phenotypes that will be measured. Applicants should have a plan for selecting to a minimum set of phenotypes necessary to drive yield gain. Based on that selection, the phenotyping platform must be able to evolve further into a simpler, faster, and less costly system. Applicants are expected to demonstrate how their proposed system will meet the in-field throughput (see Section I.E of the FOA) and cost metrics outlined in Section I.G of the FOA.

Category 1 integrated phenotyping systems solutions applicants must include ALL of the elements enumerated below in component Categories 2, 3 and 4.

CATEGORY 2: HIGH THROUGHPUT AUTOMATED HARDWARE AND SENSING TECHNOLOGIES

ARPA-E seeks applications that develop high throughput automated sensing technologies to acquire phenotypic data in the field across diverse breeding populations, with a preference for energy sorghum. Teams should generate high-fidelity image - and spectrum-based phenotype data and whole-plant assessments throughout the plant’s growth cycle for sorghum accessions/lines analyzed in field. This category requires high-precision data on growth rates,
biomass accumulation, and the physiological state of each genotype to infer variation in the carbon-system traits of interest. TERRA teams may propose more than one platform solution in order to provide full season and/or complete crop phenotyping capabilities.

Teams are asked to propose the phenotypes they expect to be most predictive of end of season biomass growth/yield. Examples of types of phenotype data, as well as the sensory and platform collection means required to gather the data, are presented in Table 1.

Table 1: Examples of candidate representative phenotypes, sensors, and platforms sought from teams submitting in Category 2 (not exhaustive)

<table>
<thead>
<tr>
<th>PHENOTYPES</th>
<th>SENSORY SYSTEMS</th>
<th>PLATFORMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BIOMASS YIELD</td>
<td>• ACTIVE REFLECTANCE</td>
<td>• UNMANNED OR OPTIONALLY PILOTED GROUND VEHICLES, WHEELED OR OTHERWISE</td>
</tr>
<tr>
<td>• CARBON (ENERGY) YIELD PER UNIT TIME, SYNTHETIC INPUT, AND MOISTURE (GENETIC EFFICIENCY)</td>
<td>• SPECTRAL INDICES (E.G. NDVI)</td>
<td>• GANTRY AND/OR CRANE SYSTEMS</td>
</tr>
<tr>
<td>• CARBON PARTITIONING TO SINKS</td>
<td>• VISUAL IMAGING FOR MORPHOMETRIC ANALYSIS (STEREO CAMERAS)</td>
<td>• CABLE-BASED SYSTEMS</td>
</tr>
<tr>
<td>• GROWTH RATE, HEIGHT, LODGING</td>
<td>• THERMAL IMAGING</td>
<td>• SELECT UNMANNED AERIAL VEHICLES (UAV), WITH APPROPRIATE GOVERNMENT APPROVALS</td>
</tr>
<tr>
<td>• MATURITY, PHOTOPERIOD SENSITIVITY</td>
<td>• HYPERSONTAL / MULTISPECTRAL IMAGING</td>
<td></td>
</tr>
<tr>
<td>• COMPOSITIONAL TRAITS (NONSTRUCTURAL AND STRUCTURAL CARBOHYDRATES AND OTHER CARBON AND MINERAL COMPOUNDS)</td>
<td>• FLUORESCENCE MEASUREMENT</td>
<td></td>
</tr>
<tr>
<td>• PHOTOSYNTHETIC EFFICIENCY</td>
<td>• ENVIRONMENTAL MONITORS (TEMPERATURE, RAINFALL, HUMIDITY, INSOLATION, CO₂, ETC.)</td>
<td></td>
</tr>
<tr>
<td>• DROUGHT TOLERANCE AND WATER USE EFFICIENCY</td>
<td>• SPATIAL IMAGING (LiDAR, ULTRASONIC)</td>
<td></td>
</tr>
<tr>
<td>• COLD TOLERANCE AND REGROWTH POTENTIAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applicants should have a plan for selecting to a minimum set of phenotypes necessary to drive yield gain. Based on that selection, the phenotyping platform must be able to evolve further into a simpler and faster system. Applicants are expected to demonstrate how their proposed technologies will meet the in-field throughput and cost metrics outlined in Section I. G of the FOA.

Further, it is understood that some nascent technologies may not be at a development stage to address all of the attributes described above. Consequently, ARPA-E will support the development of novel enabling technologies that could transformationally and significantly contribute to progress towards the objectives in this category.
ARPA-E is particularly interested in key enabling technologies that include, for example:

- Novel sensors (spectrometers, electrochemical sensors, etc.) that provide significantly improved performance and/or lower cost than existing sensor technologies.
- Technologies that enable measurements of individual plants beneath the closed leaf canopy of the crop.
- Technologies that enable non-destructive below-ground field characterization, e.g. root architecture or mass.
- Sensor approaches for soil profile characteristics, soil microbiome analyses.

CATEGORY 3: COMPUTATIONAL SOLUTIONS FOR SELECTION AND PREDICTION

ARPA-E seeks applications to develop algorithm-based computational solutions that enable the discovery of the most important and predictive attributes of the crop phenotypic data. Phenotyping systems should encompass automated data collection, data reduction, data interpretation and model fitting (Figure 3) to include plant identification (segmentation of plant from background), feature detection (e.g. height, area, color), and feature analysis (e.g. growth rate).

Teams must develop a robust informatics pipeline that addresses quantitative approaches to image and data processing that must include, at a minimum:

- **Calibration:** Manage inconsistent orientations and alignments of multiple images, image effects due to sensor noise, and image variance due to the variety of conditions found in the field (e.g., light intensities, air temperatures, and humidity levels). Of particular importance is proper registration and georeferencing of images, in addition to turn-key solutions for converting hyperspectral scans to “data-cubes” of accurate reflectance values.
- **Segmentation:** Effective methods and algorithms for separating plant foreground from field background. Included in this should be more specialized computer vision algorithms to extract canopy boundaries, for example.
- **Feature extraction:** Computer vision techniques for identifying inputs to machine learning classification or regression algorithms for phenotyping (below).
As shown in Figure 3, after data acquisition and processing, performers must apply machine learning regression and classification algorithms that operate on multimodal data-streams to extract key features for phenotyping. In addition to the imaging data described above, performers should consider adding other multimodal data streams as inputs. These streams may include text input (such as field reports) or qualitative information such as breeder visual scores (e.g. lodging), or prior beliefs and observations. Applicants should include information concerning the structure of their models, particularly regarding the algorithms employed. For example, phenotyping algorithms might include any number of machine learning or biological models, such as:

- Static Machine Learning Models: Least squares regression, logistic regression, support vector machines, sparse regression, ridge regression, random forests, etc.
- Dynamic Machine Learning Models: Markov models, Gaussian processes, etc.

Figure 3: Integrated Phenotyping Systems Data Flow

Data Collection	Data Interpretation	Model Fitting
Terabytes | Megabytes | Kilobytes
Breeder Trials | Data Acquisition | Data Processing
Score Crop Development in Field | Images, Position Information, Data Files, Meta Data | Compression, Correction and Storage

Feature Extraction
NDVI, EVI, LAI, Abiotic Stress, Growth Indices

Genomic GWAS
Genotype × Phenotype Trait Association

Greenhouse Phenomics
Phenotype × Environment Trait Association

Prediction Algorithms
Statistical Analysis and Selections

Breeder Dashboard
Advance Next Generation of Germplasm

Questions about this FOA? Email ARPA-E-CO@hq.doe.gov (with FOA name and number in subject line); see FOA Sec. VII.A. Problems with ARPA-E eXCHANGE? Email ExchangeHelp@hq.doe.gov (with FOA name and number in subject line).
• Biophysical Models: Functional growth analysis, canopy models, etc.

A crucial component is expected to be cloud computation and parallel analysis (possibly in the field) of the very large data sets necessary to train the algorithms for more accurate phenotypic prediction. Data will be derived from a series of sensors (thermal, hyperspectral, moisture, CO2, fluorescence, etc.) that collect a high-volume “data-cube” of information. The data size for integrated systems has been estimated to be up to terabytes per 24 hour run. Finding combinations of algorithms and hardware platforms that apply to this “data-at-scale” will be a research challenge that must be addressed.

As the program matures, applicants will be expected to identify the dimensions of the data that are most predictive for phenotypic quantities of interest (this would be an example of new index discovery by principled data reduction from the full volume of collected information). This will require dimensional reduction and feature selection algorithms. It is expected that the relevant data will not have a simple linear structure, making a straightforward Principle Component Analysis (PCA) inappropriate. Applicants are expected to develop more refined, non-linear dimensional reduction algorithms (such as manifold learning, etc.) to achieve the goals of this program.

Further, it is understood that some nascent technologies may not be at a development stage to address all the attributes described above. Consequently, ARPA-E will support the development of novel technologies that could transformationally and significantly contribute to progress towards the objectives in this category.

ARPA-E is particularly interested in key enabling technologies that include, for example, data-processing algorithms and predictive models that have unique capabilities for evaluating plant performance.

CATEGORY 4: GENETICS, GENOMICS AND BIOINFORMATICS

ARPA-E seeks applications to develop high-resolution genetic maps to provide the foundation for elucidating genotype-phenotype associations. The applicants should endeavor to correlate genetic markers with physiological phenotypes, using applicable tools such as genotyping-by-sequencing (GBS), whole genome re-sequencing, and other -omic (in particular transcriptomic) profiling.

The application must integrate these high-throughput sequencing derived genotypes with phenotypic data collected in the field and under controlled-environments (greenhouse and laboratory) to drive statistical genetics (QTL, eQTL, GWAS, genetic prediction, etc.) analyses focusing on traits associated with carbon productivity, for example: photosynthesis, accumulation and partitioning, plant idiotype (height, leaf angle, and tillering), plant composition, and terminal yield (grain, sugar, or biomass).

TERRA Category 4 teams are expected to generate a number of significant resources, such as:
• Genomic characterization and high-quality molecular markers suitable for whole-genome predictions and genome selection, identified as single nucleotide polymorphisms (SNPs) through genotyping-by-sequencing (GBS) and analysis of genomic re-sequencing data obtained from sorghum individuals.

• Identification of putative functional SNPs to enable increased resolution in marker-assisted breeding and provide further mechanistic insight into such biomass traits.

• Statistical genetics resources and outcomes (or analyses) including GWAS, QTL, eQTL elucidation of epistatic interactions and epigenetics.

• Controlled environment gene expression data from a diverse collection of genotypes from the juvenile stage to harvest; enabling elucidation of eQTLs and correlations of gene expression, juvenile traits, and terminal yields.

• Detailed phenotypic data determined through controlled environment high-throughput phenomics platforms and field based platforms developed during the program throughout the entire growing season.

Further, it is understood that some nascent technologies may not be at a development stage to address all the attributes described above. Consequently, ARPA-E will support the development of novel technologies that could transformationally and significantly contribute to progress towards the objectives in this category.

ARPA-E is particularly interested in key enabling technologies that include, for example, algorithms for improving predicting genes, regulatory elements, or genetic loci associated with biomass or other yield phenotypes.

CATEGORY 5: PROGRAMMATIC REFERENCE DATA GENERATION AND HOSTING

The successful applicant for Category 5 will generate and host for TERRA teams reference phenotyping data through an energy sorghum field test plot monitored by a state-of-the-art field phenotyping system provided by ARPA-E.

To facilitate the development of accurate, predictive phenotyping algorithms and support all program teams, ARPA-E will collaborate with the Category 5 awardee to make available to other awardees a high-fidelity dataset collected on sorghum field plots throughout the program. This will be accomplished by way of an automated platform that will deliver raw sensory data to all teams starting in 2015. This dataset can be used in advance of and in conjunction with any data collected by the teams using their own field platforms.

Data from a wide array of sensors on the phenotyping system will deliver high-resolution imagery and other sensory products. The data will be transferred continuously to an on-line, awardee-accessible system within 48 hours of collection. This system will offer a rich amount of spectral data, and will offer per-pixel resolution and positional accuracy suitable for plant-level
(sorghum) specificity. The high degree of sensor instrumentation on this system is expected to provide insight into the use of a diverse array of sensors, and this insight can inform the design of the low-cost field sensing platforms to be developed by TERRA teams.

Metadata will be appended to all sensory products for the purpose of timestamping and georeferencing all collected information, with standards clearly documented for the performer teams. With this metadata and a fairly continuous stream of environmental information (wind speed, temperature, etc.), the environmental context of each data product can be determined. The data generated by the reference platform will be available to all TERRA teams and all necessary interface specifications for accessing and working with the data will be provided.

The reference team, with the substantial involvement of the ARPA-E Program Director, will install, operate and maintain a reference field phenotyping system provided by ARPA-E.

ARPA-E is selecting and will provide to the reference team a state-of-the-art field phenotyping system (hereafter referred to as Government Furnished Equipment, GFE). The GFE will have the features provided in Table 2.

Table 2. Features of the GFE field phenotyping system.

<table>
<thead>
<tr>
<th>PERFORMANCE CHARACTERISTIC</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORM FACTOR</td>
<td>GANTRY SYSTEM, SENSOR BAY HEIGHT RANGE 0-6 METERS</td>
</tr>
<tr>
<td>RESOLUTION AND ACCURACY</td>
<td>PAYLOAD BAY POSITIONAL ACCURACY OF 1-5 CM OR BETTER IN X, Y AXES, AND 0.5 CM OR BETTER IN Z-AXIS</td>
</tr>
<tr>
<td></td>
<td>IMAGERY (HYPERSPECTRAL, IR, RGB) RESOLUTION OF 1 MM OR BETTER</td>
</tr>
<tr>
<td>SENSOR SUITE</td>
<td>HYPERSONTRAL IMAGER (400-2500 NM RANGE OBJECTIVE, ~700-2000 NM THRESHOLD)</td>
</tr>
<tr>
<td></td>
<td>THERMAL INFRARED (IR)</td>
</tr>
<tr>
<td></td>
<td>DEDICATED NDVI SENSOR</td>
</tr>
<tr>
<td></td>
<td>LIDAR IMAGER</td>
</tr>
<tr>
<td></td>
<td>STEREO RGB CAMERAS</td>
</tr>
<tr>
<td></td>
<td>ACTIVE REFLECTANCE SENSOR</td>
</tr>
<tr>
<td></td>
<td>FLUORESCENCE MEASUREMENT SYSTEM</td>
</tr>
<tr>
<td></td>
<td>ENVIRONMENTAL SENSORS — RAINFALL, TEMP, HUMIDITY, LIGHT INTENSITY, CO2</td>
</tr>
<tr>
<td></td>
<td>POSSIBLE SIDE-LOOK OR SLANT-ANGLE RGB AND LIDAR SENSORS DISTINCT FROM PRIMARY LOOK ANGLE</td>
</tr>
<tr>
<td>AREA AND COVERAGE RATES</td>
<td>MINIMUM 1 ACRE FOR FIELD TEST PLOT, WITH ADDITIONAL SURROUNDING AREA</td>
</tr>
<tr>
<td></td>
<td>20 METER USABLE WIDTH FOR ASSAYING PLANTS</td>
</tr>
<tr>
<td></td>
<td>PRIMARY SENSORS: COLLECTED 2-4× DAILY, 2×/WEEK</td>
</tr>
<tr>
<td></td>
<td>ENVIRONMENTAL SENSORS: COLLECTED EVERY 15 MINUTES</td>
</tr>
</tbody>
</table>
The reference team is expected to have: space and personnel available to install the GFE in the 2015 growing season; for the gantry form factor, concrete foundations poured in the field; a dedicated field site with at least 20 meters of usable width and at least 200 meters long; a power supply (10s of kW expected) to the field phenotyping system; and all relevant construction and safety permits for operation of this system. Subject to the specific provisions of the ARPA-E award, the GFE may be a permanent installation at the reference team’s site, with the system remaining with the reference team at the end of the project.

The reference team award will provide for the operation of the GFE for the duration of the project, including obtaining any necessary repairs and modifications from the GFE provider under a separate budget. As part of the GFE installation, training will be provided by the manufacturer. In collaboration with ARPA-E, the reference team will host at least one field day each year to demonstrate the GFE to the other TERRA performers.

The reference team will provide the TERRA teams access to the raw data and computational workflows.

ARPA-E has concluded that progress in phenotyping will be accelerated if raw data and computational workflows can be shared as widely and quickly as possible among the TERRA teams. For this reason the reference team is expected to make available the raw and processed data obtained using the GFE, along with all of the metadata and environmental data relevant to the interpretation and use of the measurements. This data will be provided in a format established by a data and computational standards committee (see below). ARPA-E anticipates approximately 1 Terabyte of data per day to be generated by the GFE, such that over a growing season hundreds of Terabytes may be generated, and over the course of the program on the order of several Petabytes may be generated. Given the large data volumes that will be produced, the data will be stored on a server to which TERRA teams can obtain a terminal window in order to access and analyze the data, rather than needing to move it to a local computer storage system.

In addition to providing access to the raw data, the reference team is expected to establish a data analysis pipeline similar to the one shown in Figure 3, and make its use (though not necessarily the source code of each component) available to performers in the TERRA program.

It is possible that no one website or software product will be uniquely poised to address the large data and computational demands of sensor streams, the complicated analytical tools of bioinformatics, and maintain a collaborative user environment. Applicants are therefore encouraged to partner with experts in particular areas relating to components of the data storage and analysis pipeline.

Finally, the GFE system provided by ARPA-E will include software not only for gantry and sensor controls and data handling, but also for phenotype extraction. The reference team will be expected to provide results from the GFE system to provide a clear benchmark to TERRA performers in phenotype extraction from a variety of types of images. This should take the form of documenting the phenotypes extracted from a set of raw images generated by the GFE sensors. At this time, it is the intent of ARPA-E for the Category 5 awardee to release all data to
the public at an appropriate time determined by ARPA-E that is consistent with DOE regulations.

The reference team will convene a data and computational standards committee.

The standards committee – selected in collaboration with the ARPA-E TERRA Program Director - will create the foundation for the straightforward sharing and processing of data among the numerous participants of diverse backgrounds involved in the TERRA program. The standards committee will be composed of experts in data fusion (the combination of multiple streams of data of different formats, time increments, context, etc), image analysis and feature extraction, bioinformatics, and computational pipelines, and have representatives from each of the other TERRA performers.

In collaboration with the data standards committee the reference team should provide a dataset focusing on derived phenotypes, genotypes, and measured environmental data resolved to individual plants or plots. It is most important to provide derived parameters that require extensive computation to analyze. For example, leaf count or LAI can be represented as single numbers though they may be based on numerous images. For genotypes, it is most relevant to share SNP data sets rather than whole genome sequences for comparison between individuals. The purpose of this data table is to lower computational barriers for computer scientists, statisticians, and biologists seeking to find determinants of final phenotypes and create predictive models.

The reference team must have access to a controlled chamber / greenhouse phenotyping system.

A controlled chamber / greenhouse system will be required to enable direct comparisons and correlations between lines grown under controlled environment and field conditions. In addition, the greenhouse will allow year-round operation. Given the growth potential of energy sorghum (heights exceeding 5m by maturity) and the corresponding root system needs, ARPA-E expects the greenhouse studies to focus primarily on the early stages of plant growth.

E. **TECHNICAL PERFORMANCE TARGETS**

Advanced plant phenotyping platforms should increase the utility (information content), time resolution (seasonal, daily), and amount (# phenotypes × # populations) of crop phenotyping data in order to accelerate energy crop breeding. The TERRA program’s primary objective is to enable breeders and geneticists to identify crop phenotypes/traits of interest, genetic architecture of traits, and alleles in breeding pools that can be used to accelerate genetic gain relative to current breeding approaches.

CATEGORY 1: COMPLETE INTEGRATED PHENOTYPING SYSTEMS SOLUTIONS

PRIMARY TECHNICAL TARGETS

<table>
<thead>
<tr>
<th>ID</th>
<th>DESCRIPTION</th>
<th>TARGET</th>
</tr>
</thead>
</table>

Questions about this FOA? Email ARPA-E-CO@hq.doe.gov (with FOA name and number in subject line); see FOA Sec. VII.A.

Problems with ARPA-E eXCHANGE? Email ExchangeHelp@hq.doe.gov (with FOA name and number in subject line).
1.1 COMPLETE INTEGRATED PHENOTYPING SYSTEMS SOLUTIONS TARGETS INCLUDE ALL OF THE TARGETS GIVEN BELOW FOR COMPONENT CATEGORIES 2, 3, AND 4.

1.2 TOTAL SYSTEM COST <$20K/COVERED HECTARE, THREE YEAR PAYBACK

Explanation of technical targets:
1.2: Total system cost (amortized capital cost + operating cost) is less than $20k per covered hectare for a three-year payback period. For additional information on this cost metric see Section I. G of the FOA.

CATEGORIES 2: HIGH THROUGHPUT AUTOMATED HARDWARE AND SENSING TECHNOLOGIES

PRIMARY TECHNICAL TARGETS

<table>
<thead>
<tr>
<th>ID</th>
<th>DESCRIPTION</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>PHENOTYPIC SELECTIVITY</td>
<td>TOP 10%</td>
</tr>
<tr>
<td>2.2</td>
<td>TECHNICAL REPEATABILITY</td>
<td>$R^2 > 0.99$</td>
</tr>
<tr>
<td>2.3</td>
<td>PLATFORM SCALABILITY</td>
<td>>50 HECTARES</td>
</tr>
</tbody>
</table>

SECONDARY TECHNICAL TARGETS

<table>
<thead>
<tr>
<th>ID</th>
<th>DESCRIPTION</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>PHENOTYPE DATA CAPTURE RATE</td>
<td>2 TIMES/DAY AND 2 TIMES/WEEK</td>
</tr>
<tr>
<td>2.5</td>
<td>ENVIRONMENTAL TOLERANCE</td>
<td>OPERATIONAL RANGE 32-110 °F, 30 MPH WIND GUSTS, DUST/RAIN PROTECTED TO IEC 60529 RATING OF IP54</td>
</tr>
<tr>
<td>2.6</td>
<td>IMAGE RESOLUTION</td>
<td>SUITABLE FOR PLANT-LEVEL SPECIFICITY, PER PIXEL RESOLUTION 1 CM² OR LESS</td>
</tr>
</tbody>
</table>

Explanation of technical targets:
2.1: The platform(s) should have sufficient resolution, accuracy, and precision to be able to identify the top 10% of phenotypes/traits from the analyzed populations in the relevant range of growing environments.
2.2: For phenotypic measurements taken one right after another obtain values with $R^2 > 0.99$.
2.3: The platform(s) needs to operate over an area of 50 hectares.
2.4: The platform(s) should ideally be able to measure an area of >50 hectares multiple times per day, as well as multiple times per week, in order to obtain phenotypic data at much higher temporal frequency than is presently collected.
2.5: The platform(s) need to be able to operate outdoors in a range of environmental conditions.

2.6: Sensors should be able to resolve the phenotypic information of individual plants, requiring per-pixel resolution of no more than 1 cm², and preferably less.

CATEGORY 3: COMPUTATIONAL SOLUTIONS FOR SELECTION AND PREDICTION

PRIMARY TECHNICAL TARGETS

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Above Ground Biomass Prediction Accuracy</td>
<td>(R^2 > 0.97)</td>
</tr>
<tr>
<td>3.2</td>
<td>Other Phenotype Predictions</td>
<td>Significant improvement vs existing state of the art (see explanation below)</td>
</tr>
<tr>
<td>3.3</td>
<td>Determine the Phenotypes That Correlate With the Variation in Terminal Biomass Yield</td>
<td>Find phenotypes that account for 95% of the variation in terminal biomass yield</td>
</tr>
</tbody>
</table>

SECONDARY TECHNICAL TARGETS

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Data Processing Speed/Turnaround</td>
<td>1 Week’s Phenoyping Data within 48 hrs</td>
</tr>
</tbody>
</table>

Explanation of technical targets:

3.1: Above ground biomass should be predicted from sensor data and then compared with ground truth measurements. Above ground biomass predictions from emergence to full maturity are required.

3.2: While ARPA-E is targeting a high value of \(R^2 \) for above ground biomass prediction, numerous other phenotypes (see Table 1 above for examples) are expected to correlate with terminal biomass yield, not all of which can be determined with such high prediction accuracy. Ground truth measurements for other phenotypes are also required.

3.3: In addition to the extraction of phenotypes from sensor data, ARPA-E also expects applicants in Category 3 to determine which phenotypes correlate most highly with the variation in terminal biomass yield. Given the fact that phenotypes will be collected frequently and are in the context of environmental conditions, finding the truly important phenotypes will require data-intensive algorithms. The determination of the phenotypes that are most important for producing high-yielding plants will ultimately allow for the design of low-cost sensor and computation platforms that include components targeting only the most important phenotypes. In addition, ARPA-E is particularly interested in the correlation of phenotypes that can be identified early in the season with terminal biomass yield in order to reduce the length...
of the breeding cycle.

3.4: Algorithms should be parallelizable and capable of being run on a standard Hadoop cluster to produce an analysis of one week’s data within 48 hrs.

CATEGORY 4: GENETICS, GENOMICS AND BIOINFORMATICS

PRIMARY TECHNICAL TARGETS

<table>
<thead>
<tr>
<th>ID</th>
<th>DESCRIPTION</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>GENETIC BASIS FOR BIOMASS ACCUMULATION</td>
<td>EXPLAIN AT LEAST 70% OF THE GENETIC COMPONENT OF THE PHENOTYPIC VARIANCE FOR BIOMASS ACCUMULATION</td>
</tr>
</tbody>
</table>

SECONDARY TECHNICAL TARGETS

<table>
<thead>
<tr>
<th>ID</th>
<th>DESCRIPTION</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>GENOTYPE TO PHENOTYPE ASSOCIATIONS</td>
<td>SCREEN THOUSANDS OF ACCESSIONS AND/OR BREEDER LINES AND IDENTIFY PUTATIVE FUNCTIONAL SNPs AND MOLECULAR MARKERS LINKED TO PHENOTYPIC TRAITS OF INTEREST, $p < 5 \times 10^{-6}$</td>
</tr>
</tbody>
</table>

Explanation of technical targets:

4.1: Elucidate the genetic architecture and heritability of trait/phenotypes that impact biomass yield ($P = G \times E$). Determine the portion of variation in field biomass accumulation that is explained by genetics. Explain at least 70% of the genetic component of the phenotypic variance for biomass accumulation in a population designed for technology validation, based on field phenotypic data collected from more than one environment.

4.2: Identify molecular markers and associate traits that will significantly improve the efficiency of breeder efforts to increase biomass genetic gain. Identify field-validated markers corresponding to functional variation in specific genes/trait that modify biomass yield.

CATEGORY 5: PROGRAMMATIC REFERENCE DATA GENERATION WITH GFE AND DATA HOSTING

PRIMARY TECHNICAL TARGETS

<table>
<thead>
<tr>
<th>ID</th>
<th>DESCRIPTION</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>FIELD SITE</td>
<td>>1 ACRE SUITABLE FOR THE INSTALLATION AND OPERATION OF THE GFE SYSTEM</td>
</tr>
<tr>
<td>5.2</td>
<td>GENERATE REFERENCE PHENOTYPIC DATASETS</td>
<td>APPLICABLE PERFORMANCE METRICS DESCRIBED IN CATEGORY 2, EXCLUDING 2.3</td>
</tr>
<tr>
<td>5.3</td>
<td>GENERATE REFERENCE COMPUTATION DATASETS</td>
<td>SAME PERFORMANCE METRICS DESCRIBED IN CATEGORY 3</td>
</tr>
<tr>
<td>5.4</td>
<td>GENERATE REFERENCE GENOMIC DATASETS</td>
<td>SAME PERFORMANCE METRICS DESCRIBED IN CATEGORY 4</td>
</tr>
</tbody>
</table>
5.5 CREATE DATA STANDARDS AND SOURCE COMPUTATION PIPELINE AVAILABLE TO TERRA PERFORMERS.

HOST DATA PLATFORM CAPABLE OF PROCESSING AND STORING PETABYTES OF PHENOTYPIC DATA

Explanation of technical targets:

5.1: The field site made available by an applicant to Category 5 should be >1 acre of dedicated breeding area suitable for permanent installation of a gantry system, with at least 20 x 200 meters suitable for growing sorghum and appropriate buffer areas. The site should have irrigation, a power supply, a uniform grade, high quality soil, and appropriate site security.

5.2: The GFE will have the hardware specifications to meet the requirements of Category 2 (except for 2.3); a recipient of a Category 5 award should therefore focus on carrying out the tasks described by the Category 2 metrics.

5.5: See the discussion under Category 5 in Section I.D of the FOA for more information on data standards and the data hosting and computation platform.

F. APPLICATIONS SPECIFICALLY NOT OF INTEREST

The following types of applications will be deemed nonresponsive and will not be reviewed or considered (see Section III.C.2 of the FOA):

- Applications that fall outside the technical parameters specified in Section I.E of the FOA
- Applications that were already submitted to pending ARPA-E FOAs.
- Applications that are not scientifically distinct from applications submitted to pending ARPA-E FOAs.
- Applications for basic research aimed at discovery and fundamental knowledge generation.
- Applications for large-scale demonstration projects of existing technologies.
- Applications for proposed technologies that represent incremental improvements to existing technologies.
- Applications for proposed technologies that are not based on sound scientific principles (e.g., violates a law of thermodynamics).
- Applications for proposed technologies that are not transformational, as described in Section I.A of the FOA and as illustrated in Figure 1 in Section I.A of the FOA.
- Applications for proposed technologies that do not have the potential to become disruptive in nature, as described in Section I.A of the FOA. Technologies must be scalable such that they could be disruptive with sufficient technical progress (see Figure 1 in Section I.A of the FOA).
- Applications that are not scientifically distinct from existing funded activities supported elsewhere, including within the Department of Energy.
• Applications in Categories 1-4 that propose to work with maize, or other crops that don’t have the following characteristics:
 o A demonstrated yield of >25 dry metric tons biomass/hectare/year on at least a one hectare plot in the continental United States,
 o Existing infrastructure and grower expertise,
 o At least one published and annotated genome sequence.

• Applications in Category 5 that propose to work with a crop other than energy sorghum.

G. **Economic Analysis**

In order to achieve these ambitious goals, the value provided by phenotyping platforms in terms of advanced traits must be greater than their capital and operating cost at a reasonable payback period. A standard seed industry trait valuation model was utilized to set the cost and throughput metrics for this FOA. The value of deploying an in-field phenotyping system was calculated by assuming an additional 2% year over year yield gain due to the use of a high-throughput phenotyping system, $50/ton energy crop price, set field input costs and a 5 year new seed adoption rate by the farmer. This value was split so that one-third is assigned to the seed company and two-thirds to the farmer. The “total system” includes robotics, sensors, software, data storage, technical and operating labor and the total allowable capital and operating cost was calculated with a 3 year payback period to the breeder. This calculation does not take into account the value of additional traits that are likely to be identified utilizing these phenotyping platforms; it only takes into account the value from increased yield.

Based on this preliminary economic analysis, the economic metric for this FOA is set at a total system cost of less than $20,000 per hectare covered for field phenotyping systems intended to be used by breeders and bioinformaticians on advanced field research stations. For example, a 50-hectare breeding station system cost should be less than $1M which, again, is for a three-year payback period.

II. **Award Information**

A. **Award Overview**

ARPA-E expects to make approximately $30 million available for new awards under this FOA, subject to the availability of appropriated funds. ARPA-E anticipates making approximately 5 to 10 awards under this FOA. ARPA-E may issue one, multiple, or no awards.

Individual awards may vary between $250,000 and $10 million. ARPA-E will consider awards at the upper limit of this range only for applications in Category 1, Complete Integrated Phenotyping Systems Solutions, and applications that include Category 5, Programmatic Reference Data Generation and Hosting.
The period of performance for funding agreements may not exceed 48 months. ARPA-E expects the start date for funding agreements to be August 2015, or as negotiated.

ARPA-E encourages applications stemming from ideas that still require proof-of-concept R&D efforts as well as those for which some proof-of-concept demonstration already exists.

Applications requiring proof-of-concept R&D can propose a project with the goal of delivering on the program metric at the conclusion of the project period. These applications should contain an appropriate cost and project duration plan that is described in sufficient technical detail to allow reviewers to meaningfully evaluate the proposed project. If awarded, such projects should expect a rigorous go/no-go milestone early in the project associated with the proof-of-concept demonstration. Alternatively, applications requiring proof-of-concept R&D can propose a project with the project end deliverable being an extremely creative, but partial solution. However, the Applicants are required to provide a convincing vision how these partial solutions can enable the realization of the program metrics with further development.

Applicants proposing projects for which some initial proof-of-concept demonstration already exists should submit concrete data that supports the probability of success of the proposed project.

ARPA-E will provide support at the highest funding level only for applications with significant technology risk, aggressive timetables, and careful management and mitigation of the associated risks.

ARPA-E will accept only new applications under this FOA. Applicants may not seek renewal or supplementation of their existing awards through this FOA.

ARPA-E plans to fully fund your negotiated budget at the time of award.

B. ARPA-E FUNDING AGREEMENTS

Through Cooperative Agreements, Technology Investment Agreements, and similar agreements, ARPA-E provides financial and other support to projects that have the potential to realize ARPA-E’s statutory mission. ARPA-E does not use such agreements to acquire property or services for the direct benefit or use of the U.S. Government.

Congress directed ARPA-E to “establish and monitor project milestones, initiate research projects quickly, and just as quickly terminate or restructure projects if such milestones are not achieved.”43 Accordingly, ARPA-E has substantial involvement in the direction of every project, as described in Section II.C below.

1. **COOPERATIVE AGREEMENTS**

ARPA-E generally uses Cooperative Agreements to provide financial and other support to Prime Recipients.\(^44\)

Cooperative Agreements involve the provision of financial or other support to accomplish a public purpose of support or stimulation authorized by Federal statute. Under Cooperative Agreements, the Government and Prime Recipients share responsibility for the direction of projects.

ARPA-E encourages Prime Recipients to review the Model Cooperative Agreement, which is available at http://arpa-e.energy.gov/arpa-e-site-page/award-guidance.

2. **FUNDING AGREEMENTS WITH FFRDCS, GOGOS, AND FEDERAL INSTRUMENTALITIES\(^{45}\)**

Any Federally Funded Research and Development Centers (FFRDC) involved as a member of a Project Team must complete the “FFRDC Authorization” and “Field Work Proposal” section of the Business Assurances & Disclosures Form, which is submitted with the Applicant’s Full Application.

When a FFRDC is the *lead organization* for a Project Team, ARPA-E executes a funding agreement directly with the FFRDC and a single, separate Cooperative Agreement with the rest of the Project Team. Notwithstanding the use of multiple agreements, the FFRDC is the lead organization for the entire project, including all work performed by the FFRDC and the rest of the Project Team.

When a FFRDC or non-DOE/NNSA GOGO is a *member* of a Project Team, ARPA-E executes a funding agreement directly with the FFRDC or non-DOE/NNSA GOGO and a single, separate Cooperative Agreement with the rest of the Project Team. Notwithstanding the use of multiple agreements, the Prime Recipient under the Cooperative Agreement is the lead organization for the entire project, including all work performed by the FFRDC and the rest of the Project Team.

Funding agreements with DOE/NNSA FFRDCs take the form of Work Authorizations issued to DOE/NNSA FFRDCs through the DOE/NNSA Field Work Proposal system for work performed under Department of Energy Management & Operation Contracts. Funding agreements with non-DOE/NNSA FFRDCs, GOGOs, and Federal instrumentalities (e.g., Tennessee Valley Authority) generally take the form of Interagency Agreements. Any funding agreement with a FFRDC on non-DOE/NNSA GOGO will have substantially similar terms and conditions as ARPA- E.

\(^{44}\) The Prime Recipient is the signatory to the funding agreement with ARPA-E.

\(^{45}\) DOE/NNSA GOGOs are not eligible to apply for funding, as described in Section III.A of the FOA.

Non-DOE GOGOs and Federal agencies may be proposed as supporting project team members on an applicant’s project. The Non-DOE GOGO/Agency support would be obtained via an Interagency Agreement between ARPA-E and the non-DOE GOGO/Agency, and provided as part of ARPA-E’s standard substantial involvement in its funded projects.

3. TECHNOLOGY INVESTMENT AGREEMENTS

ARPA-E may use its “other transactions” authority under the America COMPETES Reauthorization Act of 2010 or DOE’s “other transactions” authority under the Energy Policy Act of 2005 to enter into Technology Investment Agreements (TIAs) with Prime Recipients. ARPA-E may negotiate a TIA when it determines that the use of a standard cooperative agreement, grant, or contract is not feasible or appropriate for a project.

A TIA is more flexible than a traditional financial assistance agreement. In using a TIA, ARPA-E may modify standard Government terms and conditions. See 10 C.F.R. § 603.105 for a description of a TIA.

In general, TIAs require a cost share of 50%. See Section III.B.2 of the FOA.

4. GRANTS

Although ARPA-E has the authority to provide financial support to Prime Recipients through Grants, ARPA-E generally does not fund projects through Grants. ARPA-E may fund a limited number of projects through Grants, as appropriate.

C. STATEMENT OF SUBSTANTIAL INVOLVEMENT

Generally, ARPA-E is substantially involved in the direction of projects from inception to completion. For the purposes of an ARPA-E project, substantial involvement means:

- ARPA-E does not limit its involvement to the administrative requirements of the ARPA-E funding agreement. Instead, ARPA-E has substantial involvement in the direction and redirection of the technical aspects of the project as a whole. Project teams must adhere to ARPA-E technical direction and comply with agency-specific and programmatic requirements.

- ARPA-E may intervene at any time to address the conduct or performance of project activities.
• During award negotiations, ARPA-E Program Directors and Prime Recipients mutually establish an aggressive schedule of quantitative milestones and deliverables that must be met every quarter. Prime Recipients document the achievement of these milestones and deliverables in quarterly technical and financial progress reports, which are reviewed and evaluated by ARPA-E Program Directors (see Attachment 4 to ARPA-E’s Model Cooperative Agreement, available at http://arpa-e.energy.gov/arpa-e-site-page/award-guidance). ARPA-E Program Directors visit each Prime Recipient at least twice per year, and hold periodic meetings, conference calls, and webinars with Project Teams. ARPA-E Program Directors may modify or terminate projects that fail to achieve negotiated technical milestones and deliverables.

• ARPA-E works closely with Prime Recipients to facilitate and expedite the deployment of ARPA-E-funded technologies to market. ARPA-E works with other Government agencies and nonprofits to provide mentoring and networking opportunities for Prime Recipients. ARPA-E also organizes and sponsors events to educate Prime Recipients about key barriers to the deployment of their ARPA-E-funded technologies. In addition, ARPA-E establishes collaborations with private and public entities to provide continued support for the development and deployment of ARPA-E-funded technologies.

III. ELIGIBILITY INFORMATION

A. ELIGIBLE APPLICANTS

1. INDIVIDUALS

U.S. citizens or permanent residents may apply for funding in their individual capacity as a Standalone Applicant, as the lead for a Project Team, or as a member of a Project Team.

2. DOMESTIC ENTITIES

For-profit entities, educational institutions, and nonprofits that are incorporated in the United States, including U.S. territories, are eligible to apply for funding as a Standalone Applicant, as the lead organization for a Project Team, or as a member of a Project Team.

46 A Standalone Applicant is an Applicant that applies for funding on its own, not as part of a Project Team.
47 The term “Project Team” is used to mean any entity with multiple players working collaboratively and could encompass anything from an existing organization to an ad hoc teaming arrangement. A Project Team consists of the Prime Recipient, Subrecipients, and others performing or otherwise supporting work under an ARPA-E funding agreement.
48 Nonprofit organizations described in section 501(c)(4) of the Internal Revenue Code of 1986 that engaged in lobbying activities after 31, 1995 are not eligible to apply for funding as a Prime Recipient or Subrecipient.
FFRDCs are eligible to apply for funding as the lead organization for a Project Team or as a member of a Project Team, but not as a Standalone Applicant.

DOE/NNSA GOGOs are not eligible to apply for funding.

Non-DOE/NNSA GOGOs are eligible to apply for funding as a member of a Project Team, but not as a Standalone Applicant or as the lead organization for a Project Team.

State and local government entities are eligible to apply for funding as a member of a Project Team, but not as a Standalone Applicant or as the lead organization for a Project Team.

Federal agencies and instrumentalities (other than DOE) are eligible to apply for funding as a member of a Project Team, but not as a Standalone Applicant or as the lead organization for a Project Team.

3. **FOREIGN ENTITIES**

Foreign entities, whether for-profit or otherwise, are eligible to apply for funding as Standalone Applicants, as the lead organization for a Project Team, or as a member of a Project Team. All work by foreign entities must be performed by subsidiaries or affiliates incorporated in the United States (including U.S. territories). The Applicant may request a waiver of this requirement in the Business Assurances & Disclosures Form, which is submitted with the Full Application. Please refer to the Business Assurances & Disclosures Form for guidance on the content and form of the request.

4. **CONSORTIUM ENTITIES**

Consortia, which may include domestic and foreign entities, must designate one member of the consortium as the consortium representative to the Project Team. The consortium representative must be incorporated in the United States. The eligibility of the consortium will be determined by reference to the eligibility of the consortium representative under Section III.A of the FOA. Each consortium must have an internal governance structure and a written set of internal rules. Upon request, the consortium entity must provide a written description of its internal governance structure and its internal rules to the Contracting Officer (ARPA-E-CO@hq.doe.gov).

Unincorporated consortia must provide the Contracting Officer with a collaboration agreement, commonly referred to as the articles of collaboration, which sets out the rights and responsibilities of each consortium member. This agreement binds the individual consortium members together and should discuss, among other things, the consortium's:

- Management structure;
• Method of making payments to consortium members;

• Means of ensuring and overseeing members' efforts on the project;

• Provisions for members' cost sharing contributions; and

• Provisions for ownership and rights in intellectual property developed previously or under the agreement.

B. COST SHARING

Applicants are bound by the cost share proposed in their Full Applications.

1. BASE COST SHARE REQUIREMENT

ARPA-E generally uses Cooperative Agreements to provide financial and other support to Prime Recipients (see Section II.B.1 of the FOA). Under a Cooperative Agreement or Grant, the Prime Recipient must provide at least 20% of the Total Project Cost as cost share, except as provided in Sections III.B.2 or III.B.3 below.

2. INCREASED COST SHARE REQUIREMENT

Large businesses are strongly encouraged to provide more than 20% of the Total Project Cost as cost share. ARPA-E may consider the amount of cost share proposed when selecting applications for award negotiations (see Section V.B.1 of the FOA).

Under a Technology Investment Agreement, the Prime Recipient must provide at least 50% of the Total Project Cost as cost share. ARPA-E may reduce this minimum cost share requirement, as appropriate.

3. REDUCED COST SHARE REQUIREMENT

ARPA-E has reduced the minimum cost share requirement for the following types of projects:

• A domestic educational institution or domestic nonprofit applying as a Standalone Applicant is required to provide at least 5% of the Total Project Cost as cost share.

49 Please refer to Section III.B of the FOA for guidance on cost share payments and reporting.

50 The Total Project Cost is the sum of the Prime Recipient share and the Federal Government share of total allowable costs. The Federal Government share generally includes costs incurred by GOGOs and FFRDCs.

• Small businesses – or consortia of small businesses - will provide 0% cost share from the outset of the project through the first 12 months of the project (hereinafter the “Cost Share Grace Period”)52. If the project is continued beyond the Cost Share Grace Period, then at least 10% of the Total Project Cost (including the costs incurred during the Cost Share Grace Period) will be required as cost share over the remaining period of performance.

• Project Teams where a small business is the lead organization and small businesses perform greater than or equal to 80%, but less than 100%, of the total work under the funding agreement (as measured by the Total Project Cost) the Project Team are entitled to the same cost share reduction and Cost Share Grace Period as provided above to Standalone small businesses or consortia of small businesses.53

• Project Teams composed exclusively of domestic educational institutions, domestic nonprofits, and/or FFRDCs are required to provide at least 5% of the Total Project Cost as cost share.

• Project Teams where domestic educational institutions, domestic nonprofits, small businesses and/or FFRDCs perform greater than or equal to 80%, but less than 100% of the total work under the funding agreement (as measured by the Total Project Cost) are required to provide at least 10% of the Total Project Cost as cost share. However, any entity (such as a large business) receiving patent rights under a class waiver, or other patent waiver, that is part of a Project Team receiving this reduction must continue to meet the statutory minimum cost share requirement (20%) for its portion of the Total Project Cost.

• Projects that do not meet any of the above criteria are subject to the minimum cost share requirements described in Sections III.B.1 and III.B.2 of the FOA.

4. **LEGAL RESPONSIBILITY**

Although the cost share requirement applies to the Project Team as a whole, the funding agreement makes the Prime Recipient legally responsible for paying the entire cost share. The Prime Recipient’s cost share obligation is expressed in the funding agreement as a static amount in U.S. dollars (cost share amount) and as a percentage of the Total Project Cost (cost share percentage). If the funding agreement is terminated prior to the end of the project

52 Small businesses are generally defined as domestically incorporated entities that meet the criteria established by the U.S. Small Business Administration’s (SBA) “Table of Small Business Size Standards Matched to North American Industry Classification System Codes” (NAICS) (http://www.sba.gov/content/small-business-size-standards).

53 See the information provided in previous footnote.
period, the Prime Recipient is required to contribute at least the cost share percentage of total expenditures incurred through the date of termination.

The Prime Recipient is solely responsible for managing cost share contributions by the Project Team and enforcing cost share obligations assumed by Project Team members in subawards or related agreements.

5. **COST SHARE ALLOCATION**

Each Project Team is free to determine how much each Project Team member will contribute towards the cost share requirement. The amount contributed by individual Project Team members may vary, as long as the cost share requirement for the project as a whole is met.

6. **COST SHARE TYPES AND ALLOWABILITY**

Every cost share contribution must be allowable under the applicable Federal cost principles, as described in Section IV.G.1 of the FOA.

Project Teams may provide cost share in the form of cash or in-kind contributions. Cash contributions may be provided by the Prime Recipient or Subrecipients. Allowable in-kind contributions include but are not limited to personnel costs, indirect costs, facilities and administrative costs, rental value of buildings or equipment, and the value of a service, other resource, or third party in-kind contribution. Project Teams may use funding or property received from state or local governments to meet the cost share requirement, so long as the funding or property was not provided to the state or local government by the Federal Government.

The Prime Recipient may not use the following sources to meet its cost share obligations:

- Revenues or royalties from the prospective operation of an activity beyond the project period;
- Proceeds from the prospective sale of an asset of an activity;
- Federal funding or property (e.g., Federal grants, equipment owned by the Federal Government); or
- Expenditures that were reimbursed under a separate Federal program.

In addition, Project Teams may not use independent research and development (IR&D) funds to meet their cost share obligations under cooperative agreements. However, Project Teams

54 As defined in Federal Acquisition Regulation Section 31.205-18.
may use IR&D funds to meet their cost share obligations under Technology investment Agreements.

Project Teams may not use the same cash or in-kind contributions to meet cost share requirements for more than one project or program.

Cost share contributions must be specified in the project budget, verifiable from the Prime Recipient’s records, and necessary and reasonable for proper and efficient accomplishment of the project. Every cost share contribution must be reviewed and approved in advance by the Contracting Officer and incorporated into the project budget before the expenditures are incurred.

7. **COST SHARE CONTRIBUTIONS BY FFRDCs AND GOGOs**

Because FFRDCs and GOGOs are funded by the Federal Government, costs incurred by FFRDCs and GOGOs generally may not be used to meet the cost share requirement. FFRDCs may contribute cost share only if the contributions are paid directly from the contractor’s Management Fee or a non-Federal source.

Because GOGOs/Federal Agencies are funded by the Federal Government, GOGOs/Federal Agencies may not provide cost share for the proposed project. However, the GOGO/Agency costs would be included in Total Project Costs for purposes of calculating the cost-sharing requirements of the applicant.

8. **COST SHARE VERIFICATION**

Upon selection for award negotiations, Applicants are required to provide information and documentation regarding their cost share contributions. Please refer to Section VI.B.3 of the FOA for guidance on the requisite cost share information and documentation.

C. **OTHER**

1. **COMPLIANT CRITERIA**

Concept Papers are deemed compliant if:

- The Applicant meets the eligibility requirements in Section III.A of the FOA;
• The Concept Paper complies with the content and form requirements in Section IV.C of the FOA; and

• The Applicant entered all required information, successfully uploaded all required documents, and clicked the “Submit” button in ARPA-E eXCHANGE by the deadline stated in the FOA.

ARPA-E will not review or consider noncompliant Concept Papers, including Concept Papers submitted through other means, Concept Papers submitted after the applicable deadline, and incomplete Concept Papers. A Concept Paper is incomplete if it does not include required information. ARPA-E will not extend the submission deadline for Applicants that fail to submit required information and documents due to server/connection congestion.

Full Applications are deemed compliant if:

• The Applicant submitted a compliant and responsive Concept Paper;

• The Applicant meets the eligibility requirements in Section III.A of the FOA;

• The Full Application complies with the content and form requirements in Section IV.D of the FOA; and

• The Applicant entered all required information, successfully uploaded all required documents, and clicked the “Submit” button in ARPA-E eXCHANGE by the deadline stated in the FOA.

ARPA-E will not review or consider noncompliant Full Applications, including Full Applications submitted through other means, Full Applications submitted after the applicable deadline, and incomplete Full Applications. A Full Application is incomplete if it does not include required information and documents, such as Forms SF-424 and 424A. ARPA-E will not extend the submission deadline for Applicants that fail to submit required information and documents due to server/connection congestion.

Replies to Reviewer Comments are deemed compliant if:

• The Applicant successfully uploaded all required documents to ARPA-E eXCHANGE by the deadline stated in the FOA.

ARPA-E will not review or consider noncompliant Replies to Reviewer Comments, including Replies submitted through other means and Replies submitted after the applicable deadline. ARPA-E will not extend the submission deadline for Applicants that fail to submit required information due to server/connection congestion. ARPA-E will review and consider each
compliant and responsive Full Application, even if no Reply is submitted or if the Reply is found to be noncompliant.

2. **Responsiveness Criteria**

ARPA-E performs a preliminary technical review of Concept Papers and Full Applications. Any “Applications Specifically Not of Interest,” as described in Section I.F of the FOA, are deemed nonresponsive and are not reviewed or considered.

3. **Limitation on Number of Applications**

ARPA-E is not limiting the number of applications that may be submitted by Applicants. Applicants may submit more than one application to this FOA, provided that each application is scientifically distinct.

IV. **Application and Submission Information**

A. **Application Process Overview**

1. **Registration in ARPA-E eXCHANGE**

The first step in applying to this FOA is registration in ARPA-E eXCHANGE, ARPA-E’s online application portal. For detailed guidance on using ARPA-E eXCHANGE, please refer to Section IV.H.1 of the FOA and the “ARPA-E eXCHANGE User Guide” (https://arpa-e-foa.energy.gov/Manuals.aspx).

2. **Concept Papers**

Applicants must submit a Concept Paper by the deadline stated in the FOA. Section IV.C of the FOA provides instructions on submitting a Concept Paper.

ARPA-E performs a preliminary review of Concept Papers to determine whether they are compliant and responsive, as described in Section III.C of the FOA. ARPA-E makes an independent assessment of each compliant and responsive Concept Paper based on the criteria in Section V.A.1 of the FOA.

ARPA-E will encourage a subset of Applicants to submit Full Applications. Other Applicants will be discouraged from submitting a Full Application in order to save them the time and expense of preparing an application that is unlikely to be selected for award negotiations. By discouraging the submission of a Full Application, ARPA-E intends to convey its lack of programmatic interest in the proposed project. Such assessments do not necessarily reflect judgments on the merits of the proposed project. Unsuccessful Applicants should continue to submit innovative ideas and concepts to future FOAs.
3. **FULL APPLICATIONS**

Applicants must submit a Full Application by the deadline stated in the FOA. Applicants will have approximately 30 days from receipt of the Encourage/Discourage notification to prepare and submit a Full Application. Section IV.D of the FOA provides instructions on submitting a Full Application.

ARPA-E performs a preliminary review of Full Applications to determine whether they are compliant and responsive, as described in Section III.C of the FOA. ARPA-E reviews only compliant and responsive Full Applications.

4. **REPLY TO REVIEWER COMMENTS**

Once ARPA-E has completed its review of Full Applications, reviewer comments on compliant and responsive Full Applications are made available to Applicants via ARPA-E eXCHANGE. Applicants may submit an optional Reply to Reviewer Comments, which must be submitted by the deadline stated in the FOA. Section IV.E of the FOA provides instructions on submitting a Reply to Reviewer Comments.

ARPA-E performs a preliminary review of Replies to determine whether they are compliant, as described in Section III.C.1 of the FOA. ARPA-E will review and consider compliant Replies only. ARPA-E will review and consider each compliant and responsive Full Application, even if no Reply is submitted or if the Reply is found to be non-compliant.

5. **PRE-SELECTION CLARIFICATIONS AND “DOWN-SELECT” PROCESS**

Once ARPA-E completes its review of Full Applications and Replies to Reviewer Comments, it may, at the Contracting Officer’s discretion, conduct a pre-selection clarification process and/or perform a “down-select” of Full Applications. Through the pre-selection clarification process or down-select process, ARPA-E may obtain additional information from select Applicants through pre-selection meetings, webinars, videoconferences, conference calls, or site visits that can be used to make a final selection determination. ARPA-E will not reimburse Applicants for travel and other expenses relating to pre-selection meetings and site visits, nor will these costs be eligible for reimbursement as pre-award costs.

ARPA-E may select applications for funding and make awards without pre-selection meetings and site visits. Participation in a pre-selection meeting or site visit with ARPA-E does not signify that Applicants have been selected for award negotiations.
6. SELECTION FOR AWARD NEGOTIATIONS

ARPA-E carefully considers all of the information obtained through the application process and makes an independent assessment of each compliant and responsive Full Application based on the criteria and program policy factors in Sections V.A.2 and V.B.1 of the FOA. The Selection Official may select or not select a Full Application for award negotiations. The Selection Official may also postpone a final selection determination on one or more Full Applications until a later date, subject to availability of funds and other factors. ARPA-E will enter into award negotiations only with selected Applicants.

Applicants are promptly notified of ARPA-E’s selection determination. ARPA-E may stagger its selection determinations. As a result, some Applicants may receive their notification letter in advance of other Applicants. Please refer to Section VI.A of the FOA for guidance on award notifications.

7. MANDATORY WEBINAR

All selected Applicants, including the Principal Investigator and the financial manager for the project, are required to participate in a webinar that is held within approximately one week of the selection notification. During the webinar, ARPA-E officials present important information on the award negotiation process, including deadlines for the completion of certain actions.

B. APPLICATION FORMS

Required forms for Full Applications are available on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov), including the SF-424, Budget Justification Workbook/SF-424A, and Business Assurances & Disclosures Form. A sample response to the Business Assurances & Disclosures Form and a sample Summary Slide are also available on ARPA-E eXCHANGE. Applicants may use the templates available on ARPA-E eXCHANGE, including the template for the Concept Paper, the template for the Technical Volume of the Full Application, the template for the Summary Slide, the template for the Summary for Public Release, and the template for the Reply to Reviewer Comments.

C. CONTENT AND FORM OF CONCEPT PAPERS

The Concept Paper is mandatory (i.e. in order to submit a Full Application, a compliant and responsive Concept Paper must have been submitted) and must conform to the following formatting requirements:

- The Concept Paper must not exceed 5 pages in length including graphics, figures, and/or tables.
- The Concept Paper must be submitted in Adobe PDF format.
• The Concept Paper must be written in English.

• All pages must be formatted to fit on 8-1/2 by 11 inch paper with margins not less than one inch on every side. Single space all text and use Times New Roman typeface, a black font color, and a font size of 12 point or larger (except in figures and tables).

• The ARPA-E assigned Control Number, the Lead Organization Name, and the Principal Investigator’s Last Name must be prominently displayed on the upper right corner of the header of every page. Page numbers must be included in the footer of every page.

ARPA-E will not review or consider noncompliant and/or nonresponsive Concept Papers (see Section III.C of the FOA).

Each Concept Paper should be limited to a single concept or technology. Unrelated concepts and technologies should not be consolidated into a single Concept Paper.

Concept Papers must conform to the content requirements described below. If Applicants exceed the maximum page length indicated above, ARPA-E will review only the authorized number of pages and disregard any additional pages:

1. Concept Summary

• Describe the proposed concept with minimal jargon, and explain how it addresses the Program Objectives of the FOA.

• Concept Papers for the respective categories of interest should include the following:
 o Category 1: Everything outlined below for Categories 2, 3 and 4.
 o Category 2:
 a. A complete platform system level diagram that includes all major phenotyping system components and displays how they would be integrated and deployed in the field.
 b. Identification of the target crop, a list of the phenotypic traits that will be measured and environmental parameters measured.
 o Category 3: A complete data system level diagram that includes all major data analytics components in order to acquire, model and predict plant performance.
 o Category 4: Identification of the target crop, a list of the phenotypic traits that
will be measured, genes of interest, description of breeding populations that will be utilized and environmental parameters measured.

- Category 5: Everything described above for Categories 2b, 3 and 4, and a description of the field site for installation of the GFE. The site will be >1 acre of dedicated breeding area suitable for permanent installation of a gantry system, with at least 20 x 200 meters suitable for growing sorghum, appropriate buffer areas surrounding the field site, and includes irrigation, a power supply, a uniform grade, high quality soil, and appropriate site security.

2. **INNOVATION AND IMPACT**

- Clearly identify the problem to be solved with the proposed technology concept.

- Describe how the proposed effort represents an innovative and potentially transformational solution to the technical challenges posed by the FOA.

- Explain the concept’s potential to be disruptive compared to existing or emerging technologies.

- Describe how the concept will have a positive impact on at least one of the ARPA-E mission areas in Section I.A of the FOA.

- To the extent possible, provide quantitative metrics in a table that compares the proposed technology concept to current and emerging technologies and to the technical performance targets in Section I.E of the FOA for the appropriate Technology Category in Section I.D of the FOA.

3. **PROPOSED WORK**

- Describe the final deliverable(s) for the project and the overall technical approach used to achieve project objectives.

- Discuss alternative approaches considered, if any, and why the proposed approach is most appropriate for the project objectives.

- Describe the background, theory, simulation, modeling, experimental data, or other sound engineering and scientific practices or principles that support the proposed approach. Provide specific examples of supporting data and/or appropriate citations to the scientific and technical literature.
• Describe why the proposed effort is a significant technical challenge and the key technical risks to the project. Does the approach require one or more entirely new technical developments to succeed? How will technical risk be mitigated?

• Identify techno-economic challenges to be overcome for the proposed technology to be commercially relevant.

4. TEAM ORGANIZATION AND CAPABILITIES

• Indicate the roles and responsibilities of the organizations and key personnel that comprise the Project Team.

• Provide the name, position, and institution of each key team member and describe in 1-2 sentences the skills and experience that he/she brings to the team.

• Identify key capabilities provided by the organizations comprising the Project Team and how those key capabilities will be used in the proposed effort.

• Identify (if applicable) previous collaborative efforts among team members relevant to the proposed effort.

D. CONTENT AND FORM OF FULL APPLICATIONS

Full Applications must conform to the following formatting requirements:

• Each document must be submitted in the file format prescribed below.

• The Full Application must be written in English.
• All pages must be formatted to fit on 8-1/2 by 11 inch paper with margins not less than one inch on every side. Single space all text and use Times New Roman typeface, a black font color, and a font size of 12 point or larger (except in figures and tables).

• The ARPA-E assigned Control Number, the Lead Organization Name, and the Principal Investigator’s Last Name must be prominently displayed on the upper right corner of the header of every page. Page numbers must be included in the footer of every page.

ARPA-E will not review or consider noncompliant and/or nonresponsive Full Applications (see Section III.C of the FOA).

Each Full Application should be limited to a single concept or technology. Unrelated concepts and technologies should not be consolidated in a single Full Application.
Fillable Full Application template documents are available on ARPA-E eXCHANGE at https://arpa-e-foa.energy.gov.

Full Applications must conform to the content requirements described below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Required Format</th>
<th>Description and Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF-424</td>
<td>PDF</td>
<td>Application for Federal Assistance (https://arpa-e-foa.energy.gov). Applicants are responsible for ensuring that the proposed costs listed in eXCHANGE match those listed on forms SF-424 and SF-424A. Inconsistent submissions may impact ARPA-E’s final award determination.</td>
</tr>
<tr>
<td>Summary Slide</td>
<td>PPT</td>
<td>A four-panel project slide summarizing different aspects of the proposed R&D project. A Summary Slide template is available on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov).</td>
</tr>
<tr>
<td>Business Assurances & Disclosures Form</td>
<td>PDF</td>
<td>Requires the Applicant to make responsibility disclosures and disclose potential conflicts of interest within the Project Team. Requires the Applicant to describe the additionality and risks associated with the proposed project, disclose applications for funding currently pending with Federal and non-Federal entities, and disclose funding from Federal and non-Federal entities for work in the same technology area as the proposed R&D project. If the Applicant is a FFRDC, requires the Applicant to provide written authorization from the cognizant Federal agency and, if a DOE/NNSA FFRDC, a Field Work Proposal. Allows the Applicant to request a waiver or modification of the Performance of Work in the United States requirement and/or the Technology Transfer & Outreach (TT&O) spending requirement. This form is available on ARPA-E eXCHANGE at https://arpa-e-foa.energy.gov. A sample response to the Business Assurances & Disclosures Form is also available on ARPA-E eXCHANGE.</td>
</tr>
<tr>
<td>TERRA Robotics and Breeding Workbook (“R&B Workbook”)</td>
<td>XLS</td>
<td>Applicants proposing to perform field activities or deploy sensor platforms should provide the information requested in Section IV.D.7 of the FOA. A TERRA Robotics and Breeding Workbook is available on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov).</td>
</tr>
</tbody>
</table>

ARPA-E provides detailed guidance on the content and form of each component below.
1. **FIRST COMPONENT: TECHNICAL VOLUME**

The Technical Volume must be submitted in Adobe PDF format. A Technical Volume template is available at https://arpa-e-foa.energy.gov. The Technical Volume must conform to the following content and form requirements, including maximum page lengths specified below. If Applicants exceed the maximum page lengths specified for each section indicated below, ARPA-E will review only the authorized number of pages and disregard any additional pages.

Applicants must provide sufficient citations and references to the primary research literature to justify the claims and approaches made in the Technical Volume. ARPA-E and reviewers may review primary research literature in order to evaluate applications. However, ARPA-E and reviewers are under no obligation to review cited sources (e.g., Internet websites).
<table>
<thead>
<tr>
<th>PAGE LIMIT</th>
<th>SECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 page max.</td>
<td>EXECUTIVE SUMMARY</td>
<td>Summarize the objective(s) and technical approach of the proposed effort at a technical level appropriate for scientific and engineering peers.</td>
</tr>
</tbody>
</table>

INSTRUCTIONS:
1. The Project Title should be brief and descriptive of the proposed technology.
2. Identify the most relevant Technical Category for the proposed technology from the “Technical Categories of Interest” in Section I.D of the FOA. Select only one Technical Category unless the FOA specifically allows applications to name multiple categories.
3. Enter the estimated Total Project Cost in U.S. dollars and percentage cost share in parentheses.
4. Enter the Project Duration in months.
5. The Executive Summary shall not exceed 1 page in length.
6. The Executive Summary may contain graphics, figures, or tables as needed to summarize the technical concept.

| Sections 1-5 Categories 1 & 5: 40 pages max. Categories 2, 3, 4: 30 pages max. | Section 1 INNOVATION AND IMPACT | Describe how the proposed work offers an innovative approach to achieve the program objectives of the FOA and how it will impact the mission areas of ARPA-E. |

1.1 Overall Description.
- Describe the conceptual basis for the project and how the proposed technology works with minimal jargon.
- Explain the objective(s) and performance characteristics of the proposed effort.

1.2 Potential Impact.
- Clearly identify the problem that is being solved with the proposed technology.
- Describe how the proposed effort addresses one (or more) of the “Technical Categories of Interest” from Section I.D of the FOA.
- Explain the project’s potential to be disruptive relative to the existing technology or how the project establishes a basis for new innovations.

1.3 Innovativeness.
- Describe how the proposed effort represents a new and innovative solution to the overall program challenge described in the FOA.
- Indicate the technical goals and anticipated results, using appropriate metrics, for the project. Provide a description of how the metrics were derived, citing key previous results and/or assumptions.

INSTRUCTIONS:
1. The Innovation and Impact Section may include figures, tables, and graphics.
2. The suggested length of the Innovation and Impact Section is 2 pages.
<table>
<thead>
<tr>
<th>Section 2</th>
<th>PROPOSED WORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe and discuss for the proposed effort the technical background and approach, the R&D tasks, and the key technical risks. This Section should justify the proposed approach as being appropriate to achieve the project’s objective(s).</td>
<td></td>
</tr>
</tbody>
</table>
| **2.1 Approach.**
• Describe the technical approach and how this approach will achieve the proposed project objective(s).
• Discuss alternative approaches considered, if any, and why the selected approach is most appropriate for the identified objective(s).
• Describe the background, theory, simulation, modeling, experimental data, or other sound engineering and scientific practices or principles that support achieving the project objective(s). Provide specific examples of supporting data and/or appropriate citations to the scientific and technical literature. |
| **2.2 Technical Risk.**
• Identify potential technical issues and risks, e.g., the approach requires a never-before-demonstrated fabrication technique or greater-than-previously-demonstrated sub-component performance, etc.
• Describe appropriate mitigation techniques and plans, if any, for each identified issue and risk. |
| **2.3 Schedule.**
• Provide a schedule for the proposed effort by major tasks, including major milestones or Go/No-Go decision points as appropriate. For Categories 1 and 5 applications, be sure to include the integration of the work flows among the project elements and institutions. The milestones should be based on achieving quantitative program metrics. (**A Gantt chart is recommended**.) The tasks defined here are also used in the budget breakdown in Section 5.1.
• Applicants in Categories 1 and 5 may wish to break down tasks according to Categories 2, 3, and 4, but if they choose to do so they should still show the tasks on a common timeline for ease of viewing the overall project schedule. For applications to Categories 1 and 5 we recommend no more than 2 pages for the schedule, while for applications to Categories 2, 3, or 4, no more than a single page is recommended. |
| **2.4 Task Descriptions.**
• Identify and provide a technical description for each main task in the proposed effort.
• Discuss the reason the identified tasks are appropriate and sufficient for the identified approach.
• Describe the key technical and quantitative milestones and how these define the critical path for successful completion of the task.
• Indicate how completion of each task relates to reducing technological uncertainty and achieving the overall project objective(s). |
The following is category-specific information that applicants must include in their response to Sections 2.1 to 2.4 above. Applications to Category 1 should include the information for Categories 2 to 4. The information requested below is intended to expand and explain the data/information provided by the applicant in the R&B Workbook described in Section IV.D.7 of the FOA.

Category 2 requested information:

- Provide an engineering schematic of the proposed phenotyping platform(s). This should take the form of a figure(s) that includes labeled robot(s), sensors, dimensions, and any additional labels and information that will help reviewers in the visualization and understanding of the proposed platform(s). This schematic should be an expanded version of the “platform system level diagram” provided in the Concept Paper.
- Provide a data management plan, including how (and how much) data will be stored and transferred to locations where analytics will be carried out.
- Describe attributes and capabilities of the robotic platform(s) and sensors that are not adequately described in the R&B Workbook.
- ARPA-E expects that teams working in Category 2 will build a “version 1” of their platform(s), which may subsequently be improved as field experience is acquired and information on the most important phenotypes (and therefore sensors) is developed. Describe innovative and novel aspects of the “version 1” phenotyping platform(s) proposed, as well as expected innovations in moving beyond “version 1.”
- For teams applying only to Category 2, please describe how the platform(s) developed will be tested in a field context relevant to plant phenotyping.

Category 3 requested information:

The following information on the data analytics pipeline is requested:

- An expanded version of the data system level diagram that was provided in the Concept Paper. This diagram should include all the major data analytics components needed to acquire, model and predict plant performance.
- A description of preprocessing, feature extraction, and dimensional reduction algorithms (linear vs. non-linear reduction, scale of data reduction, etc.). Indicate the use of standard algorithms vs. algorithmic innovation, and the expected run times of key algorithms.
- Information on the structure of predictive models and algorithms (details on machine learning models, biophysical models, etc.). Indicate the use of standard algorithms vs. algorithmic innovation, and the expected run times of key algorithms.
- Describe use of cloud computation and parallelized algorithm implementation. If applicable, please indicate a data and analytics hosting
platform (e.g., iPlant, KBASE). Use of such architectures should be technically justified (for example, based on the scale of the data, estimated run-time of algorithms, and turn-around data analysis time needed to meet the requirements outlined in the proposal or the FOA). Discuss expected challenges with algorithm parallelization, and how those challenges may be overcome.

- Describe methods to identify the dimensions of the data that are most predictive of phenotypic quantities of interest.
- Specify plans on whether and how much of the data, work flows, and analytics will be made available to other researchers within the TERRA program or more broadly.
- Information should be provided on how the ground truth value of each phenotype value will be determined.
- If data is not being produced, the source of the data for analysis should be provided.
- While ARPA-E is targeting a high value of R^2 for above ground biomass prediction, numerous other phenotypes are expected to correlate with terminal biomass yield, not all of which can be determined with such high prediction accuracy. Provide, in table format, references to existing State of the Art (SOA) metrics (e.g., R^2, RMSE, etc.) for additional phenotypes and what is being targeted in a proposed TERRA project. Below is a sample table with SOA metrics for select phenotypes. If possible, applicants should choose sorghum as the reference for SOA values.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>R^2</th>
<th>Root Mean Squared Error</th>
<th>Coefficient of Variation</th>
<th>Proposed value for TERRA project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopy Nitrogen</td>
<td>0.97</td>
<td>0.65 g-N/m² (wheat)</td>
<td>13% (wheat)</td>
<td></td>
</tr>
<tr>
<td>Water Potential</td>
<td>0.65-0.75</td>
<td>0.4-0.5 MPa</td>
<td>25-40%</td>
<td></td>
</tr>
<tr>
<td>Leaf Area Index</td>
<td>0.91-0.95</td>
<td>0.5-0.8 m²-leaf/m²</td>
<td>18-22%</td>
<td></td>
</tr>
</tbody>
</table>

Category 4 requested information:

- Describe the scope and capabilities of the proposed breeding field development program (e.g., scale, turnover, integration with genomics and genetics).
- Describe the scope and capabilities of the proposed controlled environment development program (e.g., scale, turnover, integration with genomics and genetics).
- Describe the number of accessions and the variation expected in the germplasm that will be genotyped.
- Indicate known genome sequences, marker coverage, and SNPs that will be reused for this effort.
- Describe quality control metrics that will be met for sequencing data.
- Indicate which genotyping/sequencing methods (sequencing, SNP array, RNA-seq, ChIP-Seq, etc.) will be used, or if novel methods will be designed
- If sequencing, please indicate the number of bases to be sequenced and if any enrichment such as exome capture will be used.
- Indicate the number of markers to be profiled, and, if sequencing, the targeted marker sequencing coverage.
- Describe genomics data processing pipelines that will be employed and indicate whether these are standard algorithms or will be developed as part of the project.
- Describe the approaches that will be employed to link genotypes with phenotypes.

Category 5 requested information:

Category 5 proposals should provide the above information requested of Category 3 and 4 applications. In addition, provide the following:
- Describe necessary site preparation prior to GFE installation (electrical, availability of high-capacity data transfer, irrigation, safety and permitting, footings and foundations, grading, site security, etc).
- How will the data obtained by the GFE be made available to other TERRA performers? For example, at what frequency and in what format will the data be made available?
- How will the data standards committee be organized, governed, and populated with members internal and external to the TERRA program?

INSTRUCTIONS:
(1) The Proposed Work Section may include figures, tables, and graphics.
(2) The suggested length of the Proposed Work Section for Categories 1 and 5 is 26 pages. For applications to Categories 2, 3, or 4, the suggested length of this Section is 16 pages.

Section 3 TEAM ORGANIZATION AND CAPABILITIES

Describe and discuss the organization, capabilities, and management of the team and how these enable successful execution of the proposed effort.

3.1 Organization.
- Indicate roles and responsibilities of the organizations on the proposed Project Team, e.g., subrecipient, consultant, subcontractor, or lead organization for each of the project tasks. Include relevant organization charts and teaming organization charts, as applicable.
- Identify Key Personnel, describe how their qualifications relate to the proposed effort, and indicate their roles and responsibilities for each of the project tasks.
- Identify previous collaborative efforts among team members if relevant to the proposed effort.
- Provide a governance plan focusing on workflow management, meeting
schedules, and collaborative efforts.

- Describe how contradictions, conflicts and/or differences of opinion that arise during the project will be resolved.

3.2 Capabilities, Facilities, Equipment, and Information.
- Identify capabilities of the Applicant or proposed Project Team, e.g., relevant experience, previous or current R&D efforts, or related government or commercial projects, that support the proposed effort.
- Identify all required facilities, equipment, and information for the proposed effort and discuss their adequacy and availability.
- Indicate any key equipment that must be fabricated or purchased.

INSTRUCTIONS:

1. This Section may include figures, tables, and graphics.
2. The suggested length of the Team Section is 4 pages.

<table>
<thead>
<tr>
<th>Section 4 TECHNOLOGY TO MARKET</th>
</tr>
</thead>
<tbody>
<tr>
<td>The significant impact sought by ARPA-E depends upon successful projects finding a path to large-scale adoption. ARPA-E projects are not required to achieve commercial deployment by the end of the project period, but the agency asks the applicant to define a reasonable path for the proposed technology toward commercial adoption.</td>
</tr>
</tbody>
</table>

4.1 Technology to Market Strategy.
- Describe how the proposed technology is expected to transition from the lab to commercial deployment, including a description of the eventual product, potential near- and long-term market entries, likely commercialization approach (startup, license, etc.), specific organizations expected to be involved in the transition (partners, customers, etc.), and the commercialization timeline.
- Describe the team members who will be responsible for developing the end user interface to the breeder. Describe the functionality of the interface and how it will be customized for the user.
- Discuss manufacturing, cost, and scalability risks associated with the technology. What are the largest driving costs of the system, including operating and capital costs? How do you see those costs changing in the future with either volume production or innovation?
- Explain why the proposed research is not being pursued by industry today.
- Discuss the anticipated roles for the proposed research team in the commercialization of the technology.
- Describe how the team would estimate the economic value of the program innovations based upon potential product features, attributes and benefits. (Do not do an actual estimate here. Do walk through how the calculation would be done).
- Describe how the team would calculate the pay-back period to the eventual customer/user of the end-goal system. (Do not do an actual estimate here. Do walk through how the calculation would be done).
4.2 Intellectual Property.

- Describe existing intellectual property, if any, that will be used to develop the new intellectual property; and
- Discuss new intellectual property and data that is anticipated to be created as part of this effort, if any.

INSTRUCTIONS:

1. The Technology to Market Section may include figures, tables, and graphics.
2. The suggested length of the Technology to Market Section is 4 pages.

Section 5

BUDGET

Indicate the budget, in US dollars, and provide a high-level budget summary, demonstrating that the budget is reasonable and appropriate for the proposed effort.

5.1 Budget Breakdown.

Provide in tabular form following the template given below, a breakdown of the project budget by entity and major task in US dollars. The tasks identified here should be the same as those described in Section 2.4.

<table>
<thead>
<tr>
<th>Task Name</th>
<th>[Prime]</th>
<th>[Sub #1]</th>
<th>[Sub #2]</th>
<th>[Sub #3]</th>
<th>[Sub #4]</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Task #1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Task #2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Task #3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Task #4]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Replace “Prime” with name of the primary (lead) entity and “Sub #n” with the name of the sub-recipient or sub-contractor entities, if applicable. Task names should clearly correspond to major tasks listed in Section 2.4. Expand or contract the table as needed to add/subtract entities (columns) or tasks (rows).

5.2 Budget Summary.

Provide a high-level summary for the project by major budget category, including at least these three:

- Key Personnel and technical staff to be utilized (e.g., scientists, engineers, technicians, postdocs, graduate students, etc.)
- Equipment
- Materials and Supplies

5.3 Cost Share.

Provide a description of the cost share by value of the contribution (in dollars) and percentage of the Total Project Cost (TPC):

Questions about this FOA? Email **ARPA-E-CO@hq.doe.gov** (with FOA name and number in subject line); see FOA Sec. VII.A.

Problems with ARPA-E eXCHANGE? Email **ExchangeHelp@hq.doe.gov** (with FOA name and number in subject line).
Questions about this FOA? Email ARPA-E-CO@hq.doe.gov (with FOA name and number in subject line); see FOA Sec. VII.A.

Problems with ARPA-E eXCHANGE? Email ExchangeHelp@hq.doe.gov (with FOA name and number in subject line).

2. Second Component: SF-424

The SF-424 must be submitted in Adobe PDF format. This form is available on ARPA-E eXCHANGE at https://arpa-e-foa.energy.gov.

The SF-424 includes instructions for completing the form. Applicants are required to complete all required fields in accordance with the instructions.
Prime Recipients and Subrecipients are required to complete SF-LLL (Disclosure of Lobbying Activities), available at http://www.whitehouse.gov/sites/default/files/omb/grants/sfllin.pdf, if any non-Federal funds have been paid or will be paid to any person for influencing or attempting to influence an officer or employee of any Federal agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with your application or funding agreement. The completed SF-LLL must be appended to the SF-424.

ARPA-E provides the following supplemental guidance on completing the SF-424:

- Each Project Team should submit only one SF-424 (i.e., a Subrecipient should not submit a separate SF-424).

- Assume a project start date of August 2015, or as negotiated.

- The dates and dollar amounts on the SF-424 are for the entire project period (from the project start date to the project end date), not a portion thereof.

- Applicants are responsible for ensuring that the proposed costs listed in eXCHANGE match those listed on forms SF-424 and SF-424A. Inconsistent submissions may impact ARPA-E’s final award determination.

3. **Third Component: Budget Justification Workbook/SF-424A**

Applicants are required to complete the Budget Justification Workbook/SF-424A Excel spreadsheet. This form is available on ARPA-E eXCHANGE at https://arpa-e-foa.energy.gov. Prime Recipients must complete each tab of the Budget Justification Workbook for the project as a whole, including all work to be performed by the Prime Recipient and its Subrecipients and Contractors, and provide all requested documentation (e.g., a Federally-approved forward pricing rate agreement, Defense Contract Audit Agency or Government Audits and Reports, if available). The SF-424A form included with the Budget Justification Workbook will “auto-populate” as the Applicant enters information into the Workbook. Applicants should carefully read the “Instructions and Summary” tab provided within the Budget Justification Workbook.

Subrecipient information must be submitted as follows:

- Each Subrecipient incurring greater than or equal to 10% of the Total Project Cost must complete a separate Budget Justification workbook to justify its proposed budget. These worksheets must be inserted as additional sheets within in the Prime Recipient’s
Budget Justification.

- Subrecipients incurring less than 10% of the Total Project Cost are not required to complete a separate Budget Justification workbook. However, such Subrecipients are required to provide supporting documentation to justify their proposed budgets. At a minimum, the supporting documentation must show which tasks/subtasks are being performed, the purpose/need for the effort, and a sufficient basis for the estimated costs.

ARPA-E provides the following supplemental guidance on completing the Budget Justification Workbook/SF-424A:

- Applicants may request funds under the appropriate object class category tabs as long as the item and amount requested are necessary to perform the proposed work, meet all the criteria for allowability under the applicable Federal cost principles, and are not prohibited by the funding restrictions described herein.

- If Patent costs are requested, they must be included in the Applicant’s proposed budget (see Section IV.G.3 of the FOA for more information on Patent Costs).

- Unless a waiver is granted by the Contracting Officer, each Project Team must spend at least 5% of the Federal funding (i.e., the portion of the award that does not include the recipient’s cost share) on Technology Transfer & Outreach (TT&O) activities to promote and further the development and deployment of ARPA-E-funded technologies. In addition, Project Teams may not expend more than 5% of the Total Project Cost on TT&O activities without the prior approval of the Contracting Officer (see Section IV.G.8 of the FOA).

- All TT&O costs requested must be included in the Applicant’s proposed budget and identified as TT&O costs in the Budget Justification Workbook/SF-424A with the costs being requested under the “Other” budget category. All budgeted activities must relate to achieving specific objectives, technical milestones and deliverables outlined in Section 2.4 Task Descriptions of the Technical Volume.

- For pricing purposes, assume a project start date of [date], or as negotiated.

- For more information, please refer to the ARPA-E Budget Justification Guidance document at https://arpa-e-foa.energy.gov.

4. Fourth Component: Summary for Public Release

Applicants are required to provide a 250 word max. Summary for Public Release. A Summary for Public Release template is available on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov).
The Summary for Public Release must be submitted in Adobe PDF format. This summary should not include any confidential, proprietary, or privileged information. The summary should be written for a lay audience (e.g., general public, media, Congress) using plain English.

<table>
<thead>
<tr>
<th>250 Words</th>
<th>SUMMARY FOR PUBLIC RELEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briefly describe the proposed effort, summarize its objective(s) and technical approach, describe its ability to achieve the “Program Objectives” (see Section I.C of the FOA), and indicate its potential impact on “ARPA-E Mission Areas” (see Section I.A of the FOA). The summary should be written at technical level suitable for a high-school science student and is designed for public release.</td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS:

1. The Summary for Public Release shall not exceed 250 words and one paragraph.
2. The Summary for Public Release shall consist only of text—no graphics, figures, or tables.
3. For applications selected for award negotiations, the Summary may be used as the basis for a public announcement by ARPA-E; therefore, this Cover Page and Summary should not contain confidential or proprietary information. See Section VIII.E of the FOA for additional information on marking confidential information.

5. **FIFTH COMPONENT: SUMMARY SLIDE**

Applicants are required to provide a single PowerPoint slide summarizing the proposed project. The slide must be submitted in Microsoft PowerPoint format. This slide will be used during ARPA-E’s evaluation of Full Applications. A summary slide template and a sample summary slide are available on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov).

Summary Slides must conform to the content requirements described below:

- A Technology Summary;
 - Bullet points that describe novel aspects of the proposed technology and technology approach;
- A description of the technology’s impact;
 - Quantitative description (through text or graphic) of the impact the proposed project will provide to the market and ARPA-E mission areas;
- Proposed Targets;
 - Including any important technical performance metrics and/or impact categories;
 - Including quantitative description of the state of the art;
 - Including quantitative descriptions of the proposed targets;
- Any key graphics (illustrations, charts and/or tables) summarizing technology development and/or impact;
- The project’s key idea/takeaway;
- Project title and Principal Investigator information; and
- Requested ARPA-E funds and proposed applicant cost share.

Questions about this FOA? Email ARPA-E-CO@hq.doe.gov (with FOA name and number in subject line); see FOA Sec. VII.A. Problems with ARPA-E eXCHANGE? Email ExchangeHelp@hq.doe.gov (with FOA name and number in subject line).
6. **SIXTH COMPONENT: BUSINESS ASSURANCES & DISCLOSURES FORM**

Applicants are required to complete a Business Assurances & Disclosures Form. The form must be submitted in Adobe PDF format. This form is available on ARPA-E eXCHANGE at https://arpa-e-foa.energy.gov. A sample response to the Business Assurances & Disclosures Form is also available on ARPA-E eXCHANGE.

In the Business Assurances & Disclosures Form, the Applicant is required to:

- Disclose conditions bearing on responsibility, such as criminal convictions and Federal tax liability;
- Disclose potential conflicts of interest within the Project Team;
- If the Applicant is a FFRDC, submit written authorization from the cognizant Federal agency; and
- If the Applicant is a DOE/NNSA FFRDC, submit a Field Work Proposal.

In addition, ARPA-E is required by statute to “accelerat[e] transformational technological advances in areas that industry is by itself not likely to undertake because of technical and financial uncertainty.”55 In accordance with ARPA-E’s statutory mandate, the Applicant is required to:

- Describe the additionality and risks associated with the proposed R&D project;
- Disclose any applications for the same project or related work currently pending with any Federal or non-Federal entities; and
- Disclose all funding for work in the same technology area as the proposed project received from any Federal or non-Federal entity within the last 5 years.

Finally, the Applicant may use the Business Assurances & Disclosures Form to:

- Request authorization to perform some work overseas; and
- Request a waiver of the TT&O spending requirement.

7. **SEVENTH COMPONENT: TERRA ROBOTICS AND BREEDING WORKBOOK**

Applicants proposing to perform field activities or deploy sensor platforms should submit a TERRA Robotics & Breeding Workbook. The TERRA Robotics & Breeding Workbook must be submitted in a Microsoft Excel Spreadsheet. A Workbook template is available at <https://arpa-e-foa.energy.gov>. The Workbook must conform to the following content and form requirements.

Phenotypes and Breeding

Any applicants performing field and/or breeding work should fill out this sheet.

Phenotypes targeted

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>How phenotype is measured</th>
<th>Growth stage at which phenotype is measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Breeding program information

<table>
<thead>
<tr>
<th>Item</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop(s) of focus. If more than one crop will be studied, please provide the expected fraction of breeder plots dedicated to each (e.g., % energy vs. sweet vs. grain sorghum).</td>
<td></td>
</tr>
<tr>
<td>Description of germplasm source(s)</td>
<td></td>
</tr>
<tr>
<td>Degree of breeding advancement (e.g., F1 vs. elite)</td>
<td></td>
</tr>
<tr>
<td>Number of accessions/lines/varieties to be studied</td>
<td></td>
</tr>
</tbody>
</table>

Robotics platform(s) and sensors

Any applicant developing or demonstrating a robotic and sensing platform should fill out this sheet.

For the estimated costs below, ARPA-E requests applicants to use today’s values and to provide them for "version 1" of their platform(s). ARPA-E understands that these costs may not initially meet the TERRA cost targets.
ARPA-E defines a platform as a robotic system with sensors. For example, an application that proposes two different UAVs (one rotor, one fixed wing) and one ground vehicle has three platforms. Each platform may have multiple robotic units in order to reach the ARPA-E area coverage targets.

Collection Platform #1 (copy and paste rows 7-40 below for each additional platform)

<table>
<thead>
<tr>
<th>Platform #1 robotics major components</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of subcomponent (examples: structure, data storage, navigation system, ground control station, etc.)</td>
<td>Estimated current cost ($)</td>
</tr>
<tr>
<td>Component 1</td>
<td></td>
</tr>
<tr>
<td>Component 2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platform #1 specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area coverage rate per unit (hectares of breeding plots covered / hour)</td>
<td></td>
</tr>
<tr>
<td>Level of autonomy (describe in words, no need for official autonomy level definitions)</td>
<td></td>
</tr>
<tr>
<td>Plant height (meters) and growth stages covered</td>
<td></td>
</tr>
<tr>
<td>For UAV platforms, describe any FAA certifications for UAV operation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platform #1 sensors major components</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor description</td>
<td>Phenotype(s) measured</td>
</tr>
<tr>
<td>Plant sensors</td>
<td></td>
</tr>
<tr>
<td>Sensor 1</td>
<td></td>
</tr>
<tr>
<td>Sensor 2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Environmental sensors</td>
<td></td>
</tr>
<tr>
<td>Sensor 1</td>
<td></td>
</tr>
<tr>
<td>Sensor 2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
E. **CONTENT AND FORM OF REPLIES TO REVIEWER COMMENTS**

Written feedback on Full Applications is made available to Applicants before the submission deadline for Replies to Reviewer Comments. Applicants have a brief opportunity to prepare a short Reply to Reviewer Comments responding to one or more comments or supplementing their Full Application. A fillable Reply to Reviewer Comments template is available on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov).

Replies to Reviewer Comments must conform to the following requirements:

- The Reply to Reviewer Comments must be submitted in Adobe PDF format.
- The Reply to Reviewer Comments must be written in English.
- All pages must be formatted to fit on 8-1/2 by 11 inch paper with margins not less than one inch on every side. Use Times New Roman typeface, a black font color, and a font size of 12 points or larger (except in figures and tables).
- The Control Number must be prominently displayed on the upper right corner of the header of every page. Page numbers must be included in the footer of every page.

ARPA-E will not review or consider noncompliant Replies to Reviewer Comments (see Section III.C.1 of the FOA). ARPA-E will review and consider each compliant and responsive Full Application, even if no Reply is submitted or if the Reply is found to be noncompliant.

Replies to Reviewer Comments must conform to the following content and form requirements, including maximum page lengths, described below. If a Reply to Reviewer Comments is more than three pages in length, ARPA-E will review only the first three pages and disregard any additional pages.

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE LIMIT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>2 pages maximum</td>
<td>• Applicants may respond to one or more reviewer comments or supplement their Full Application.</td>
</tr>
<tr>
<td>Images</td>
<td>1 page maximum</td>
<td>• Applicants may provide graphs, charts, or other data to respond to reviewer comments or supplement their Full Application.</td>
</tr>
</tbody>
</table>

F. **INTERGOVERNMENTAL REVIEW**

This program is not subject to Executive Order 12372 (Intergovernmental Review of Federal Programs).
G. **FUNDING RESTRICTIONS**

1. **ALLOWABLE COSTS**

All expenditures must be allowable, allocable, and reasonable in accordance with the applicable Federal cost principles. ARPA-E has listed the Federal cost principles for different categories of Applicants at http://arpa-e.energy.gov/arpa-e-site-page/post-award-guidance.

2. **PRE-AWARD COSTS**

ARPA-E will not reimburse any pre-award costs incurred by Applicants before they are selected for award negotiations. Please refer to Section VI.A of the FOA for guidance on award notices.

Upon selection for award negotiations, Applicants may incur pre-award costs at their own risk, consistent with the requirements in 10 2 C.F.R. part 600 200 as amended by 2 C.F.R part 910 and other Federal laws and regulations. ARPA-E generally does not accept budgets as submitted with the Full Application. Budgets are typically reworked during award negotiations. ARPA-E is under no obligation to reimburse pre-award costs if, for any reason, the Applicant does not receive an award or the award is made for a lesser amount than the Applicant expected, or if the costs incurred are not allowable, allocable, or reasonable.

Given the uncertainty of award negotiations, it is strongly recommended that Prime Recipients and Subrecipients consult with the Contracting Officer (ARPA-E-CO@hq.doe.gov) before incurring any pre-award costs.

3. **PATENT COSTS**

ARPA-E will fully reimburse the following types of patent costs:

- Cost of preparing and submitting invention disclosures to ARPA-E and DOE;
- Cost of searching the art to the extent reasonable and necessary to make invention disclosures to ARPA-E and DOE, as required by Attachment 2 to the funding agreement; and
- Cost of preparing the reports and other documents required by Attachment 2 to the funding agreement.
ARPA-E will reimburse up to $30,000 in costs and fees incurred in preparing and filing domestic and foreign patents. The Prime Recipient may request a waiver of the $30,000 cap. Because all patent costs are considered to be Technology Transfer & Outreach (TT&O) costs (see Section IV.G.8 of the FOA below), the waiver request is subject to review by the ARPA-E Program Director and approval by the Contracting Officer.

4. **Construction**

ARPA-E generally does not fund projects that involve major construction. Recipients are required to obtain written authorization from the Contracting Officer before incurring any major construction costs.

5. **Foreign Travel**

ARPA-E generally does not fund projects that involve foreign travel. Recipients are required to obtain written authorization from the Contracting Officer before incurring any foreign travel costs and provide trip reports with their reimbursement requests.

6. **Performance of Work in the United States**

ARPA-E strongly encourages interdisciplinary and cross-sectoral collaboration spanning organizational boundaries. Such collaboration enables the achievement of scientific and technological outcomes that were previously viewed as extremely difficult, if not impossible.

ARPA-E requires all work under ARPA-E funding agreements to be performed in the United States – i.e., Prime Recipients must expend 100% of the Total Project Cost in the United States. However, Applicants may request a waiver of this requirement where their project would materially benefit from, or otherwise requires, certain work to be performed overseas.

Applicants seeking a waiver of this requirement are required to include an explicit request in the Business Assurances & Disclosures Form, which is part of the Full Application submitted to ARPA-E. Such waivers are granted where there is a demonstrated need, as determined by ARPA-E.

7. **Purchase of New Equipment**

All new equipment purchased under ARPA-E funding agreements must be made or manufactured in the United States, to the maximum extent practicable. This requirement does not apply to used or leased equipment. Project Teams may purchase foreign-made equipment where comparable domestic equipment is not reasonably available.
8. **TECHNOLOGY TRANSFER AND OUTREACH**

By law, ARPA-E is required to contribute a percentage of appropriated funds to Technology Transfer and Outreach (TT&O) activities. In order to meet this mandate every Project Team must spend at least 5% of the Federal funding (i.e., the portion of the award that does not include the recipient’s cost share) provided by ARPA-E on TT&O activities to promote and further the development and deployment of ARPA-E-funded technologies. Project Teams may not expend more than 5% of the Total Project Cost on TT&O activities without the prior approval of the Contracting Officer. Project Teams must also seek a waiver from the Contracting Officer to spend less than the minimum 5% TT&O expenditure requirement.

All TT&O expenditures are subject to the applicable Federal cost principles, as described in Section IV.G.1 of the FOA. Examples of TT&O expenditures are as follows:

- Documented travel and registration for the ARPA-E Energy Innovation Summit and other energy-related conferences and events;
- Documented travel to meet with potential suppliers, partners, or customers;
- Documented work by salaried or contract personnel to develop technology-to-market models or plans;
- Documented costs of acquiring industry-accepted market research reports; and
- Approved patent costs.

ARPA-E will not reimburse the following types of TT&O expenditures, which do not comply with Federal cost principles.

- Meals or entertainment;
- Gifts to potential suppliers, partners, or customers;
- TT&O activities that do not relate to the ARPA-E-funded technologies;
- Undocumented TT&O activities; and
- TT&O activities unrelated and/or unallocable to the subject award.

Applicants may seek a waiver of the TT&O requirement by including an explicit request in the Business Assurances & Disclosures Form. Please refer to the Business Assurances & Disclosures Form for guidance on the content and form of the waiver request. ARPA-E may waive or modify the TT&O requirement, as appropriate.
For information regarding incorporation of TT&O costs into budget documentation, see Section IV.D.3 of the FOA.

9. **LOBBYING**

Prime Recipients and Subrecipients may not use any Federal funds, directly or indirectly, to influence or attempt to influence, directly or indirectly, congressional action on any legislative or appropriation matters pending before Congress, other than to communicate to Members of Congress as described in 18 U.S.C. § 1913. This restriction is in addition to those prescribed elsewhere in statute and regulation.

Prime Recipients and Subrecipients are required to complete and submit SF-LLL, “Disclosure of Lobbying Activities” (http://www.whitehouse.gov/sites/default/files/omb/grants/sflllin.pdf) if any non-Federal funds have been paid or will be paid to any person for influencing or attempting to influence any of the following in connection with your application:

- An officer or employee of any Federal agency,
- A Member of Congress,
- An officer or employee of Congress, or
- An employee of a Member of Congress.

10. **CONFERENCE SPENDING**

Prime Recipients and Subrecipients may not use any Federal funds to:

- Defray the cost to the United States Government of a conference held by any Executive branch department, agency, board, commission, or office which is not directly and programmatically related to the purpose for which their ARPA-E award is made and for which the cost to the United States Government is more than $20,000; or
- To circumvent the required notification by the head of any such Executive Branch department, agency, board, commission, or office to the Inspector General (or senior ethics official for any entity without an Inspector General), of the date, location, and number of employees attending such a conference.
H. OTHER SUBMISSION REQUIREMENTS

1. USE OF ARPA-E eXCHANGE

Upon creating an application submission in ARPA-E eXCHANGE, Applicants will be assigned a Control Number. If the Applicant creates more than one application submission, a different Control Number will be assigned for each application.

Once logged in to ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/login.aspx), Applicants may access their submissions by clicking the “My Submissions” link in the navigation on the left side of the page. Every application that the Applicant has submitted to ARPA-E and the corresponding Control Number is displayed on that page. If the Applicant submits more than one application to a particular FOA, a different Control Number is shown for each application. Applicants are responsible for meeting each submission deadline in ARPA-E eXCHANGE. Applicants are strongly encouraged to submit their applications at least 48 hours in advance of the submission deadline. Under normal conditions (i.e., at least 48 hours in advance of the submission deadline), Applicants should allow at least 1 hour to submit a Concept Paper, or Full Application. In addition, Applicants should allow at least 15 minutes to submit a Reply to Reviewer Comments. Once the application is submitted in ARPA-E eXCHANGE, Applicants may revise or update their application until the expiration of the applicable deadline.

Applicants should not wait until the last minute to begin the submission process. During the final hours before the submission deadline, Applicants may experience server/connection congestion that prevents them from completing the necessary steps in ARPA-E eXCHANGE to submit their applications. ARPA-E will not extend the submission deadline for Applicants that fail to submit required information and documents due to server/connection congestion.

ARPA-E will not review or consider incomplete applications and applications received after the deadline stated in the FOA. Such applications will be deemed noncompliant (see Section III.C.1 of the FOA). The following errors could cause an application to be deemed “incomplete” and thus noncompliant:

- Failing to comply with the form and content requirements in Section IV of the FOA;
• Failing to enter required information in ARPA-E eXCHANGE;
• Failing to upload required document(s) to ARPA-E eXCHANGE;
• Uploading the wrong document(s) or application(s) to ARPA-E eXCHANGE; and
• Uploading the same document twice, but labeling it as different documents. (In the latter scenario, the Applicant failed to submit a required document.)

ARPA-E urges Applicants to carefully review their applications and to allow sufficient time for the submission of required information and documents.

V. APPLICATION REVIEW INFORMATION

A. CRITERIA

ARPA-E performs a preliminary review of Concept Papers and Full Applications to determine whether they are compliant and responsive (see Section III.C of the FOA). ARPA-E also performs a preliminary review of Replies to Reviewer Comments to determine whether they are compliant.

ARPA-E considers a mix of quantitative and qualitative criteria in determining whether to encourage the submission of a Full Application and whether to select a Full Application for award negotiations.

1. CRITERIA FOR CONCEPT PAPERS

(1) Impact of the Proposed Technology Relative to FOA Targets (50%) - This criterion involves consideration of the following factors:

• The extent to which the proposed quantitative material and/or technology metrics demonstrate the potential for a transformational and disruptive (not incremental) advancement compared to existing or emerging technologies;

• The extent to which the proposed concept will have a positive impact on at least one of ARPA-E’s mission areas in Section I.A of the FOA;

• The extent to which the proposed concept is innovative and will achieve the technical performance targets defined in Section I.E of the FOA for the appropriate technology Category in Section I.D of the FOA; and

• The extent to which the Applicant demonstrates awareness of competing commercial and emerging technologies and identifies how the proposed
concept/technology provides significant improvement over existing solutions.

(2) *Overall Scientific and Technical Merit* (50%) - This criterion involves consideration of the following factors:

- The feasibility of the proposed work, as justified by appropriate background, theory, simulation, modeling, experimental data, or other sound scientific and engineering practices;

- The extent to which the Applicant proposes a sound technical approach to accomplish the proposed R&D objectives, including why the proposed concept is more appropriate than alternative approaches and how technical risk will be mitigated;

- The extent to which project outcomes and final deliverables are clearly defined;

- The extent to which the Applicant identifies techno-economic challenges that must be overcome for the proposed technology to be commercially relevant; and

- The demonstrated capabilities of the individuals performing the project, the key capabilities of the organizations comprising the Project Team, the roles and responsibilities of each organization and (if applicable) previous collaborations among team members supporting the proposed project.

Submissions will not be evaluated against each other since they are not submitted in accordance with a common work statement. The above criteria will be weighted as follows:

<table>
<thead>
<tr>
<th>Impact of the Proposed Technology Relative to FOA Targets</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Scientific and Technical Merit</td>
<td>50%</td>
</tr>
</tbody>
</table>

2. **Criteria for Full Applications**

Full Applications are evaluated based on the following criteria:

(1) *Impact of the Proposed Technology* (30%) - This criterion involves consideration of the following factors:

- The extent to which the proposed quantitative material and/or technology metrics demonstrate the potential for a transformational and disruptive (not incremental) advancement in one or more energy-related fields;

- The extent to which the Applicant demonstrates a profound understanding of the current state-of-the-art and presents an innovative technical approach to
significantly improve performance over the current state-of-the-art; and

- The extent to which the Applicant demonstrates awareness of competing commercial and emerging technologies and identifies how its proposed concept/technology provides significant improvement over these other solutions;

- The extent to which the Applicant proposes a reasonable and effective strategy for transitioning the proposed technology from the laboratory to commercial deployment.

(2) Overall Scientific and Technical Merit (30%) - This criterion involves consideration of the following factors:

- The extent to which the proposed work is unique and innovative;

- The extent to which project outcomes and deliverables are clearly defined;

- The extent to which the proposed project is likely to meet or exceed the technical performance targets identified in this FOA;

- The feasibility of the proposed work based upon preliminary data or other background information and sound scientific and engineering practices and principles;

- The extent to which the Applicant proposes a sound technical approach, including appropriately defined technical tasks, to accomplish the proposed R&D objectives;

- The extent to which the Applicant manages risk, by identifying major technical R&D risks and clearly proposes feasible, effective mitigation strategies.

(3) Qualifications, Experience, and Capabilities of the Proposed Project Team (30%) - This criterion involves consideration of the following factors:

- The extent to which the PI and Project Team have the skill and expertise needed to successfully execute the project plan, evidenced by prior experience that demonstrates an ability to perform R&D of similar risk and complexity; and

- The extent to which the Applicant has access to the equipment and facilities necessary to accomplish the proposed R&D effort and/or a clear plan to obtain access to necessary equipment and facilities.

(4) Soundness of Management Plan (10%) - This criterion involves consideration of the
following factors:

• The extent to which the Applicant presents a plausible plan to manage people and resources;

• The extent to which the Applicant proposes allocation of appropriate levels of effort and resources to proposed tasks;

• Whether the proposed project schedule, including major milestones is reasonable; and

• The appropriateness of the proposed budget to accomplish the proposed project.

Submissions will not be evaluated against each other since they are not submitted in accordance with a common work statement.

3. **Criteria for Replies to Reviewer Comments**

ARPA-E has not established separate criteria to evaluate Replies to Reviewer Comments. Instead, Replies to Reviewer Comments are evaluated as an extension of the Full Application.

B. **Review and Selection Process**

1. **Program Policy Factors**

In addition to the above criteria, ARPA-E may consider the following program policy factors in determining which Full Applications to select for award negotiations:

I. **ARPA-E Portfolio Balance.** Project balances ARPA-E portfolio in one or more of the following areas:
 a. Technological diversity;
 b. Organizational diversity;
 c. Geographic diversity;
 d. Technical or commercialization risk; or
 e. Stage of technology development.

II. **Relevance to ARPA-E Mission Advancement.** Project contributes to one or more of ARPA-E’s key statutory goals:
 a. Reduction of US dependence on foreign energy sources;
 b. Stimulation of domestic manufacturing;
 c. Reduction of energy-related emissions;
 d. Increase in U.S. energy efficiency;
 e. Enhancement of U.S. economic and energy security; or
 f. Promotion of U.S. advanced energy technologies competitiveness.
III. **Synergy of Public and Private Efforts.**
 a. Avoids duplication and overlap with other publicly or privately funded projects;
 b. Promotes increased coordination with nongovernmental entities for demonstration of technologies and research applications to facilitate technology transfer; or
 c. Increases unique research collaborations.

IV. **Low likelihood of other sources of funding.** High technical and/or financial uncertainty that results in the non-availability of other public, private or internal funding or resources to support the project.

V. **High-Leveraging of Federal Funds.** Project leverages Federal funds to optimize advancement of programmatic goals by proposing cost share above the required minimum or otherwise accessing scarce or unique resources.

VI. **High Project Impact Relative to Project Cost.**

 2. **ARPA-E REVIEWERS**

By submitting an application to ARPA-E, Applicants consent to ARPA-E’s use of Federal employees, contractors, and experts from educational institutions, nonprofits, industry, and governmental and intergovernmental entities as reviewers. ARPA-E selects reviewers based on their knowledge and understanding of the relevant field and application, their experience and skills, and their ability to provide constructive feedback on applications.

ARPA-E requires all reviewers to complete a Conflict-of-Interest Certification and Nondisclosure Agreement through which they disclose their knowledge of any actual or apparent conflicts and agree to safeguard confidential information contained in Concept Papers, Full Applications, and Replies to Reviewer Comments. In addition, ARPA-E trains its reviewers in proper evaluation techniques and procedures.

Applicants are not permitted to nominate reviewers for their applications. Applicants may contact the Contracting Officer by email (ARPA-E-CO@hq.doe.gov) if they have knowledge of a potential conflict of interest or a reasonable belief that a potential conflict exists.

 3. **ARPA-E SUPPORT CONTRACTOR**

ARPA-E utilizes contractors to assist with the evaluation of applications and project management. To avoid actual and apparent conflicts of interest, ARPA-E prohibits its support contractors from submitting or participating in the preparation of applications to ARPA-E.

Questions about this FOA? Email ARPA-E-CO@hq.doe.gov (with FOA name and number in subject line); see FOA Sec. VII.A.
Problems with ARPA-E eXCHANGE? Email ExchangeHelp@hq.doe.gov (with FOA name and number in subject line).
By submitting an application to ARPA-E, Applicants represent that they are not performing support contractor services for ARPA-E in any capacity and did not obtain the assistance of ARPA-E’s support contractor to prepare the application. ARPA-E will not consider any applications that are submitted by or prepared with the assistance of its support contractors.

C. **ANTICIPATED ANNOUNCEMENT AND AWARD DATES**

ARPA-E expects to announce selections for negotiations in approximately May 2015 and to execute funding agreements in approximately August 2015.

VI. **AWARD ADMINISTRATION INFORMATION**

A. **AWARD NOTICES**

1. **REJECTED SUBMISSIONS**

Noncompliant and nonresponsive Concept Papers and Full Applications are rejected by the Contracting Officer and are not reviewed or considered. The Contracting Officer sends a notification letter by email to the technical and administrative points of contact designated by the Applicant in ARPA-E eXCHANGE. The notification letter states the basis upon which the Concept Paper or Full Application was rejected.

2. **CONCEPT PAPER NOTIFICATIONS**

ARPA-E promptly notifies Applicants of its determination to encourage or discourage the submission of a Full Application. ARPA-E sends a notification letter by email to the technical and administrative points of contact designated by the Applicant in ARPA-E eXCHANGE. ARPA-E provides feedback in the notification letter in order to guide further development of the proposed technology.

Applicants may submit a Full Application even if they receive a notification discouraging them from doing so. By discouraging the submission of a Full Application, ARPA-E intends to convey its lack of programmatic interest in the proposed project. Such assessments do not necessarily reflect judgments on the merits of the proposed project. The purpose of the Concept Paper phase is to save Applicants the considerable time and expense of preparing a Full Application that is unlikely to be selected for award negotiations.

A notification letter encouraging the submission of a Full Application does not authorize the Applicant to commence performance of the project. Please refer to Section IV.G.2 of the FOA for guidance on pre-award costs.

Questions about this FOA? Email ARPA-E-CO@hq.doe.gov (with FOA name and number in subject line); see FOA Sec. VII.A.

Problems with ARPA-E eXCHANGE? Email ExchangeHelp@hq.doe.gov (with FOA name and number in subject line).
3. **FULL APPLICATION NOTIFICATIONS**

ARPA-E promptly notifies Applicants of its determination. ARPA-E sends a notification letter by email to the technical and administrative points of contact designated by the Applicant in ARPA-E eXCHANGE. The notification letter may inform the Applicant that its Full Application was selected for award negotiations, or not selected. Alternatively, ARPA-E may notify one or more Applicants that a final selection determination on particular Full Applications will be made at a later date, subject to the availability of funds or other factors.

Written feedback on Full Applications is made available to Applicants before the submission deadline for Replies to Reviewer Comments. By providing feedback, ARPA-E intends to guide the further development of the proposed technology and to provide a brief opportunity to respond to reviewer comments.

a. SUCCESSFUL APPLICANTS

ARPA-E has discretion to select all or part of a proposed project for negotiation of an award. A notification letter selecting a Full Application for award negotiations does not authorize the Applicant to commence performance of the project. **ARPA-E selects Full Applications for award negotiations, not for award.** Applicants do not receive an award until award negotiations are complete and the Contracting Officer executes the funding agreement. ARPA-E may terminate award negotiations at any time for any reason.

b. POSTPONED SELECTION DETERMINATIONS

A notification letter postponing a final selection determination until a later date does not authorize the Applicant to commence performance of the project. ARPA-E may ultimately determine to select or not select the Full Application for award negotiations.

Please refer to Section IV.G.2 of the FOA for guidance on pre-award costs.

c. UNSUCCESSFUL APPLICANTS

By not selecting a Full Application, ARPA-E intends to convey its lack of programmatic interest in the proposed project. Such assessments do not necessarily reflect judgments on the merits of the proposed project. ARPA-E hopes that unsuccessful Applicants will submit innovative ideas and concepts for future FOAs.
B. **ADMINISTRATIVE AND NATIONAL POLICY REQUIREMENTS**

The following administrative and national policy requirements apply to Prime Recipients. The Prime Recipient is the responsible authority regarding the settlement and satisfaction of all contractual and administrative issues, including but not limited to disputes and claims arising out of any agreement between the Prime Recipient and a FFRDC contractor. Prime Recipients are required to flow down these requirements to their Subrecipients through subawards or related agreements.

1. **DUNS NUMBER AND SAM, FSRS, AND FedConnect Registrations**

Upon selection for award negotiations, Prime Recipients and Subrecipients are required to obtain a Dun and Bradstreet Data Universal Numbering System (DUNS) number at http://fedgov.dnb.com/webform. In addition, Prime Recipients and Subrecipients are required to register with the System for Award Management (SAM) at https://www.sam.gov/portal/public/SAM/. Applicants who currently have an active record in the Central Contractor Registry (CCR) have an active record in SAM, but a new username must still be registered.

Prime Recipients and Subrecipients should commence this process as soon as possible in order to expedite the execution of a funding agreement. Obtaining a DUNS number and registering with SAM could take several weeks.

By law, Prime Recipients are also required to register with the Federal Funding Accountability and Transparency Act Subaward Reporting System (FSRS) at https://www.fsrs.gov/. Prime Recipients are required to report to FSRS the names and total compensation of each of the Prime Recipient’s five most highly compensated executives and the names and total compensation of each Subrecipient’s five most highly compensated executives. Please refer to https://www.fsrs.gov/ for guidance on reporting requirements.

ARPA-E may not execute a funding agreement with the Prime Recipient until it has obtained a DUNS number and completed its SAM and FSRS registrations. In addition, the Prime Recipient may not execute subawards with Subrecipients until they obtain a DUNS number and complete their SAM registration. Prime Recipients and Subrecipients are required to keep their SAM and FSRS data current throughout the duration of the project.

Finally, Prime Recipients are required to register with FedConnect in order to receive notification that their funding agreement has been executed by the Contracting Officer and to obtain a copy of the executed funding agreement. Please refer to https://www.fedconnect.net/FedConnect/ for registration instructions.

2. **NATIONAL POLICY ASSURANCES**

Project Teams, including Prime Recipients and Subrecipients, are required to comply with the National Policy Assurances attached to their funding agreement. Please refer to ARPA-E’s Model Cooperative Agreement (http://arpa-e.energy.gov/FundingAgreements/CooperativeAgreements.aspx) for guidance on the National Policy Assurances.

3. **PROOF OF COST SHARE COMMITMENT AND ALLOWABILITY**

Upon selection for award negotiations, the Prime Recipient must confirm in writing that the proposed cost share contribution is allowable in accordance with applicable Federal cost principles.

The Prime Recipient is also required to provide cost share commitment letters from Subrecipients or third parties that are providing cost share, whether cash or in-kind. Each Subrecipient or third party that is contributing cost share must provide a letter on appropriate letterhead that is signed by an authorized corporate representative. Please refer to the “Applicants’ Guide to ARPA-E Award Negotiations” (http://www.arpa-e.energy.gov/sites/default/files/documents/files/Award_Negotiations_Guide081613.pdf) for guidance on the contents of cost share commitment letters.

4. **COST SHARE PAYMENTS**¹⁷

All proposed cost share contributions must be reviewed in advance by the Contracting Officer and incorporated into the project budget before the expenditures are incurred.

ARPA-E generally requires Prime Recipients to contribute the cost share amount incrementally over the life of the funding agreement. Small Businesses see Section III.B.3 of the FOA.

ARPA-E may deny reimbursement requests, in whole or in part, or modify or terminate funding agreements where Prime Recipients (or Project Teams) fail to comply with ARPA-E’s cost share payment requirements.

¹⁷ Please refer to Section III.B of the FOA for guidance on cost share requirements.
5. **ENVIRONMENTAL IMPACT QUESTIONNAIRE**

By law, ARPA-E is required to evaluate the potential environmental impact of projects that it is considering for funding. In particular, ARPA-E must determine before funding a project whether the project qualifies for a categorical exclusion under 10 C.F.R. § 1021.410 or whether it requires further environmental review (i.e., an environmental assessment or an environmental impact statement).

To facilitate and expedite ARPA-E’s environmental review, Prime Recipients are required to complete an Environmental Impact Questionnaire during award negotiations. This form is available on ARPA-E eXCHANGE at https://arpa-e.foa.energy.gov. The Environmental Impact Questionnaire is due within 21 calendar days of the selection announcement.

6. **TECHNOLOGY-TO-MARKET PLAN**

During award negotiations, Prime Recipients are required to negotiate and submit an initial Technology-to-Market Plan to the ARPA-E Program Director, and obtain the ARPA-E Program Director’s approval prior to the execution of the award. Prime Recipients must show how budgeted Technology Transfer and Outreach (TT&O) costs relate to furthering elements of the Technology-to-Market Plan. During the project period, Prime Recipients are required to provide regular updates on the initial Technology-to-Market plan and report on implementation of Technology-to-Market activities. Prime Recipients may be required to perform other actions to further the commercialization of their respective technologies.

ARPA-E may waive or modify this requirement, as appropriate.

7. **INTELLECTUAL PROPERTY MANAGEMENT PLAN**

ARPA-E requires every Project Team to negotiate and establish an Intellectual Property Management Plan for the management and disposition of intellectual property arising from the project. The Prime Recipient must submit a completed and signed Intellectual Property Management plan to ARPA-E within six weeks of the effective date of the ARPA-E funding agreement. All Intellectual Property Management Plans are subject to the terms and conditions of the ARPA-E funding agreement and its intellectual property provisions, and applicable Federal laws, regulations, and policies, all of which take precedence over the terms of Intellectual Property Management Plans.

ARPA-E has developed a template for Intellectual Property Management Plans (http://arpa-e.energy.gov/FundingAgreements/Overview.aspx) so as to facilitate and expedite negotiations between Project Team members. ARPA-E does not mandate the use of this template. ARPA-E and DOE do not make any warranty (express or implied) or assume any liability or responsibility for the accuracy, completeness, or usefulness of the template. ARPA-E and DOE strongly encourage Project Teams to consult independent legal counsel before using the template.
8. U.S. MANUFACTURING REQUIREMENT

ARPA-E requires products embodying or produced through the use of subject inventions (i.e., inventions conceived or first actually reduced to practice under ARPA-E funding agreements) to be substantially manufactured in the United States by Project Teams and their licensees, as described below. The Applicant may request a modification or waiver of the U.S. Manufacturing Requirement.

a. SMALL BUSINESSES

Small businesses (including Small Business Concerns) that are Prime Recipients or Subrecipients under ARPA-E funding agreements are required to substantially manufacture the following products in the United States for any use or sale in the United States: (1) products embodying subject inventions, and (2) products produced through the use of subject invention(s). This requirement does not apply to products that are manufactured for use or sale outside the U.S. A.

Small businesses must apply the same U.S. Manufacturing requirements to their assignees, licensees, and entities acquiring a controlling interest in the small business. Small businesses must require their assignees and entities acquiring a controlling interest in the small business to apply the same U.S. Manufacturing requirements to their licensees.

b. LARGE BUSINESSES AND FOREIGN ENTITIES

Large businesses and foreign entities that are Prime Recipients or Subrecipients under ARPA-E funding agreements are required to substantially manufacture the following products in the United States: (1) products embodying subject inventions, and (2) products produced through the use of subject invention(s). This requirement applies to products that are manufactured for use or sale in the United States and outside the United States.

Large businesses and foreign entities must apply the same U.S. Manufacturing requirements to their assignees, licensees, and entities acquiring a controlling interest in the large business or foreign entity. Large businesses and foreign entities must require their assignees and entities

58 Small businesses are generally defined as domestically incorporated entities that meet the criteria established by the U.S. Small Business Administration’s “Table of Small Business Size Standards Matched to North American Industry Classification System Codes” (http://www.sba.gov/content/small-business-size-standards).

59 Large businesses are generally defined as domestically incorporated entities that do not meet the criteria established by the U.S. Small Business Administration’s “Table of Small Business Size Standards Matched to North American Industry Classification System Codes” (http://www.sba.gov/content/small-business-size-standards).
acquiring a controlling interest in the large business or foreign entity to apply the same U.S. Manufacturing requirements to their licensees.

C. EDUCATIONAL INSTITUTIONS AND NONPROFITS

Domestic educational institutions and nonprofits that are Prime Recipients or Subrecipients under ARPA-E funding agreements must require their exclusive licensees to substantially manufacture the following products in the United States for any use or sale in the United States: (1) articles embodying subject inventions, and (2) articles produced through the use of subject invention(s). This requirement does not apply to articles that are manufactured for use or sale overseas.

Educational institutions and nonprofits must require their assignees to apply the same U.S. Manufacturing requirements to their exclusive licensees.

These U.S. Manufacturing requirements do not apply to nonexclusive licensees.

d. FFRDCs and State and Local Government Entities

FFRDCs and state and local government entities are subject to the same U.S. Manufacturing requirements as domestic educational institutions and nonprofits.

9. CORPORATE FELONY CONVICTIONS AND FEDERAL TAX LIABILITY

In submitting an application in response to this FOA, the Applicant represents that:

- It is not a corporation that has been convicted of a felony criminal violation under any Federal law within the preceding 24 months; and

- It is not a corporation that has any unpaid Federal tax liability that has been assessed, for which all judicial and administrative remedies have been exhausted or have lapsed, and that is not being paid in a timely manner pursuant to an agreement with the authority responsible for collecting the tax liability.

C. REPORTING

Recipients are required to submit periodic, detailed reports on technical, financial, and other aspects of the project, as described in Attachment 4 to ARPA-E’s Model Cooperative Agreement (http://arpa-e.energy.gov/FundingAgreements/CooperativeAgreements.aspx).
VII. AGENCY CONTACTS

A. COMMUNICATIONS WITH ARPA-E

Upon the issuance of a FOA, only the Contracting Officer may communicate with Applicants. ARPA-E personnel and our support contractors are prohibited from communicating (in writing or otherwise) with Applicants regarding the FOA. This “quiet period” remains in effect until ARPA-E’s public announcement of its project selections.

During the “quiet period,” Applicants are required to submit all questions regarding this FOA to ARPA-E-CO@hq.doe.gov.

- ARPA-E will post responses on a weekly basis to any questions that are received. ARPA-E may re-phrase questions or consolidate similar questions for administrative purposes.

- ARPA-E will cease to accept questions approximately 5 business days in advance of each submission deadline. Responses to questions received before the cutoff will be posted approximately one business day in advance of the submission deadline. ARPA-E may re-phrase questions or consolidate similar questions for administrative purposes.

- Responses are posted to “Frequently Asked Questions” on ARPA-E’s website (http://arpa-e.energy.gov/faq).

Applicants may submit questions regarding ARPA-E eXCHANGE, ARPA-E’s online application portal, to ExchangeHelp@hq.doe.gov. ARPA-E will promptly respond to emails that raise legitimate, technical issues with ARPA-E eXCHANGE. ARPA-E will refer any questions regarding the FOA to ARPA-E-CO@hq.doe.gov.

ARPA-E will not accept or respond to communications received by other means (e.g., fax, telephone, mail, hand delivery). Emails sent to other email addresses will be disregarded.

During the “quiet period,” only the Contracting Officer may authorize communications between ARPA-E personnel and Applicants. The Contracting Officer may communicate with Applicants as necessary and appropriate. As described in Section IV.A of the FOA, the Contracting Officer may arrange pre-selection meetings and/or site visits during the “quiet period.”

B. DEBRIEFINGS

ARPA-E does not offer or provide debriefings. ARPA-E provides Applicants with a notification encouraging or discouraging the submission of a Full Application based on ARPA-E’s assessment.
of the Concept Paper. In addition, ARPA-E provides Applicants with reviewer comments on Full Applications before the submission deadline for Replies to Reviewer Comments.

VIII. OTHER INFORMATION

A. FOAs AND FOA MODIFICATIONS

FOAs are posted on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/), Grants.gov (http://www.grants.gov/), and FedConnect (https://www.fedconnect.net/FedConnect/). Any modifications to the FOA are also posted to these websites. You can receive an e-mail when a modification is posted by registering with FedConnect as an interested party for this FOA. It is recommended that you register as soon as possible after release of the FOA to ensure that you receive timely notice of any modifications or other announcements. More information is available at https://www.fedconnect.net.

B. OBLIGATION OF PUBLIC FUNDS

The Contracting Officer is the only individual who can make awards on behalf of ARPA-E or obligate ARPA-E to the expenditure of public funds. A commitment or obligation by any individual other than the Contracting Officer, either explicit or implied, is invalid.

ARPA-E awards may not be transferred, assigned, or assumed without the prior written consent of a Contracting Officer.

C. REQUIREMENT FOR FULL AND COMPLETE DISCLOSURE

Applicants are required to make a full and complete disclosure of the information requested in the Business Assurances & Disclosures Form. Disclosure of the requested information is mandatory. Any failure to make a full and complete disclosure of the requested information may result in:

- The rejection of a Concept Paper, Full Application, and/or Reply to Reviewer Comments;
- The termination of award negotiations;
- The modification, suspension, and/or termination of a funding agreement;
- The initiation of debarment proceedings, debarment, and/or a declaration of ineligibility for receipt of Federal contracts, subcontracts, and financial assistance and benefits; and
• Civil and/or criminal penalties.

D. RETENTION OF SUBMISSIONS

ARPA-E expects to retain copies of all Concept Papers, Full Applications, Replies to Reviewer Comments, and other submissions. No submissions will be returned. By applying to ARPA-E for funding, Applicants consent to ARPA-E’s retention of their submissions.

E. MARKING OF CONFIDENTIAL INFORMATION

ARPA-E will use data and other information contained in Concept Papers, Full Applications, and Replies to Reviewer Comments strictly for evaluation purposes.

Concept Papers, Full Applications, Replies to Reviewer Comments, and other submissions containing confidential, proprietary, or privileged information must be marked as described below. Failure to comply with these marking requirements may result in the disclosure of the unmarked information under the Freedom of Information Act or otherwise. The U.S. Government is not liable for the disclosure or use of unmarked information, and may use or disclose such information for any purpose.

The cover sheet of the Concept Paper, Full Application, Reply to Reviewer Comments, or other submission must be marked as follows and identify the specific pages containing confidential, proprietary, or privileged information:

Notice of Restriction on Disclosure and Use of Data:

Pages [___] of this document may contain confidential, proprietary, or privileged information that is exempt from public disclosure. Such information shall be used or disclosed only for evaluation purposes or in accordance with a financial assistance or loan agreement between the submitter and the Government. The Government may use or disclose any information that is not appropriately marked or otherwise restricted, regardless of source.

The header and footer of every page that contains confidential, proprietary, or privileged information must be marked as follows: “Contains Confidential, Proprietary, or Privileged Information Exempt from Public Disclosure.” In addition, every line and paragraph containing proprietary, privileged, or trade secret information must be clearly marked with double brackets or highlighting.

F. TITLE TO SUBJECT INVENTIONS

Ownership of subject inventions is governed pursuant to the authorities listed below. Typically, either by operation of law or under the authority of a patent waiver, Prime Recipients and
Subrecipients may elect to retain title to their subject inventions under ARPA-E funding agreements.

- Domestic Small Businesses, Educational Institutions, and Nonprofits: Under the Bayh-Dole Act (35 U.S.C. § 200 et seq.), domestic small businesses, educational institutions, and nonprofits may elect to retain title to their subject inventions. If they elect to retain title, they must file a patent application in a timely fashion.

- All other parties: The Federal Non Nuclear Energy Act of 1974, 42. U.S.C. 5908, provides that the Government obtains title to new inventions unless a waiver is granted (see below).

- Class Waiver: Under 42 U.S.C. § 5908, title to subject inventions vests in the U.S. Government and large businesses and foreign entities do not have the automatic right to elect to retain title to subject inventions. However, ARPA-E typically issues "class patent waivers" under which large businesses and foreign entities that meet certain stated requirements may elect to retain title to their subject inventions. If a large business or foreign entity elects to retain title to its subject invention, it must file a patent application in a timely fashion.

G. GOVERNMENT RIGHTS IN SUBJECT INVENTIONS

Where Prime Recipients and Subrecipients retain title to subject inventions, the U.S. Government retains certain rights.

1. GOVERNMENT USE LICENSE

The U.S. Government retains a nonexclusive, nontransferable, irrevocable, paid-up license to practice or have practiced for or on behalf of the United States any subject invention throughout the world. This license extends to contractors doing work on behalf of the Government.

2. MARCH-IN RIGHTS

The U.S. Government retains march-in rights with respect to all subject inventions. Through “march-in rights,” the Government may require a Prime Recipient or Subrecipient who has elected to retain title to a subject invention (or their assignees or exclusive licensees), to grant a license for use of the invention. In addition, the Government may grant licenses for use of the subject invention when Prime Recipients, Subrecipients, or their assignees and exclusive licensees refuse to do so.
The U.S. Government may exercise its march-in rights if it determines that such action is necessary under any of the four following conditions:

- The owner or licensee has not taken or is not expected to take effective steps to achieve practical application of the invention within a reasonable time;
- The owner or licensee has not taken action to alleviate health or safety needs in a reasonably satisfactory manner;
- The owner has not met public use requirements specified by Federal statutes in a reasonably satisfactory manner; or
- The U.S. Manufacturing requirement has not been met.

H. **RIGHTS IN TECHNICAL DATA**

Data rights differ based on whether data is first produced under an award or instead was developed at private expense outside the award.

- **Background or “Limited Rights Data”:** The U.S. Government will not normally require delivery of technical data developed solely at private expense prior to issuance of an award, except as necessary to monitor technical progress and evaluate the potential of proposed technologies to reach specific technical and cost metrics.

- **Generated Data:** The U.S. Government normally retains very broad rights in technical data produced under Government financial assistance awards, including the right to distribute to the public. However, pursuant to special statutory authority, certain categories of data generated under ARPA-E awards may be protected from public disclosure for up to five years. Such data should be clearly marked as described in Section VIII.E of the FOA. In addition, invention disclosures may be protected from public disclosure for a reasonable time in order to allow for filing a patent application.

I. **REGULATIONS APPLICABLE TO RESULTING AWARDS**

Effective December 26, 2014, this FOA and any awards made under it will be governed by 2 C.F.R. Part 200, the Uniform Administrative Requirements, Cost Principles, and Audit Requirements for Federal Awards, as modified by 2 C.F.R. Part 910, the Department of Energy Financial Assistance Rules.
J. **PROTECTED PERSONALLY IDENTIFIABLE INFORMATION**

Applicants may not include any Protected Personally Identifiable Information (Protected PII) in their submissions to ARPA-E. Protected PII is defined as data that, if compromised, could cause harm to an individual such as identity theft. Listed below are examples of Protected PII that Applicants must not include in their submissions.

- Social Security Numbers in any form;
- Place of Birth associated with an individual;
- Date of Birth associated with an individual;
- Mother’s maiden name associated with an individual;
- Biometric record associated with an individual;
- Fingerprint;
- Iris scan;
- DNA;
- Medical history information associated with an individual;
- Medical conditions, including history of disease;
- Metric information, e.g. weight, height, blood pressure;
- Criminal history associated with an individual;
- Ratings;
- Disciplinary actions;
- Performance elements and standards (or work expectations) are PII when they are so intertwined with performance appraisals that their disclosure would reveal an individual’s performance appraisal;
- Financial information associated with an individual;
- Credit card numbers;
- Bank account numbers; and
- Security clearance history or related information (not including actual clearances held).
IX. GLOSSARY

Applicant: The entity that submits the application to ARPA-E. In the case of a Project Team, the Applicant is the lead organization listed on the application.

Application: The entire submission received by ARPA-E, including the Concept Paper, Full Application, and Reply to Reviewer Comments.

ARPA-E: Advanced Research Projects Agency-Energy.

Cost Share: The Prime Recipient share of the Total Project Cost.

Deliverable: A deliverable is the quantifiable goods or services that will be provided upon the successful completion of a project task or sub-task.

DOE: U.S. Department of Energy.

DOE/NNSA: U.S. Department of Energy/National Nuclear Security Administration

FFRDCs: Federally Funded Research and Development Centers.

FOA: Funding Opportunity Announcement.

GOGOs: U.S. Government-Owned, Government-Operated laboratories.

Key Participant: Any individual who would contribute in a substantive, measurable way to the execution of the proposed project.

Milestone: A milestone is the tangible, observable measurement that will be provided upon the successful completion of a project task or sub-task.

Prime Recipient: The signatory to the funding agreement with ARPA-E.

PI: Principal Investigator.

Project Team: A Project Team consists of the Prime Recipient, Subrecipients, and others performing or otherwise supporting work under an ARPA-E funding agreement.

R&D: Research and development.

Standalone Applicant: An Applicant that applies for funding on its own, not as part of a Project Team.
Subject Invention: Any invention conceived or first actually reduced to practice under an ARPA-E funding agreement.

Task: A task is an operation or segment of the work plan that requires both effort and resources. Each task (or sub-task) is connected to the overall objective of the project, via the achievement of a milestone or a deliverable.

Total Project Cost: The sum of the Prime Recipient share and the Federal Government share of total allowable costs. The Federal Government share generally includes costs incurred by FFRDCs and GOGOs.

TT&O: Technology Transfer and Outreach. (See Section IV.G.8 of the FOA for more information).